The European Space Agency (ESA) Swarm spacecraft mission is the first multisatellite ionospheric mission with two low-orbiting spacecraft that are flying in parallel at a distance of~100-140 km, thus allowing derivation of spatial gradients of ionospheric parameters not only along the orbits but also in the direction perpendicular to them. A third satellite with a higher orbit regularly crosses the paths of the lower spacecraft. Using the Swarm magnetic and electric field instruments, we present a novel technique that allows derivation of two-dimensional (2-D) maps of ionospheric conductances, currents, and electric field in the area between the trajectories of the two lower spacecraft, and even to some extent outside of it. This technique is based on Spherical Elementary Current Systems. We present test cases of modeled situations from which we calculate virtual Swarm data and show that the technique is able to reconstruct the model electric field, horizontal currents, and conductances with a very good accuracy. Larger errors arise for the reconstruction of the 2-D field-aligned currents (FAC), especially in the area outside of the spacecraft orbits. However, even in this case the general pattern of FAC is recovered, and the magnitudes are valid in an integrated sense. Finally, using an MHD model run, we show how our technique allows estimation of the ionosphere-magnetosphere coupling parameter K, if conjugate observations of the magnetospheric magnetic and electric field are available. In the case of a magnetospheric multisatellite mission (e.g., the ESA Cluster mission) several K estimates at nearby points can be generated.
Ionospheric equivalent currents are defined as spherical sheet currents, which reproduce the observed magnetic disturbances below the ionosphere. One way of determining these currents is to place several so called spherical elementary current systems (SECS) in the ionospheric height and to solve an inversion problem for the amplitudes of these systems. In previous studies this method has been applied to two-dimensional data sets, having both latitudinal and longitudinal spatial coverage (2D SECS method). In this paper a one-dimensional variant of this method (1D SECS) is developed. The 1D SECS method can be used even in those situations where the data set is one dimensional, e.g. with one meridionally aligned magnetometer chain. The applicability of the 1D SECS method is tested using both synthetic and real data. It is found that in real situations the errors in the 1D SECS results are 5-10% in current density profiles and ∼5% in integrated currents, when compared to the results of the more accurate 2D SECS method.
Derivation of the auroral ionospheric currents from magnetic field measurements can produce drastically different results depending on the data and method used. We have cross tested several methods for obtaining instantaneous field‐aligned and horizontal currents from Swarm satellite and International Monitor for Auroral Geomagnetic Effects (IMAGE) ground magnetic field measurements. We found that Swarm can yield latitude profiles of the east‐west component of the divergence‐free current density at most at ∼200 km resolution, typically resolving the electrojets. The north‐south divergence‐free component, on the other hand, is not always well reproduced due to the small longitudinal distance between the side‐by‐side flying satellite pair. Swarm can yield the field‐aligned and curl‐free current density at a wider range of latitude resolutions (∼7.5–200 km) than the divergence‐free current density. While 7.5 km is suitable for comparison with auroras, 200 km typically resolves the Regions 1 and 2 field‐aligned currents. IMAGE can yield maps of the divergence‐free current density at ∼50 km resolution. Induced telluric currents should be accounted for in the derivation. Not accounting for them in the Swarm analysis, however, does not appear to introduce significant errors. Ionospheric conductances can be estimated by combining the total horizontal current density, consisting of the curl‐free and divergence‐free components, with the electric field measurements. Our results indicate that Swarm can only yield these at ∼200 km scale size when there is no significant dependence on longitude. However, combining the divergence‐free current from IMAGE with the curl‐free current and electric field from Swarm could yield conductance maps at ∼50 km resolution.
Geomagnetically induced currents (GIC) are a space weather phenomenon that can interfere with power transmission and even cause blackouts. The primary drivers of GIC can be represented as ionospheric equivalent currents. We used International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometer data from 1994–2013 to analyze the extreme behavior of the time derivative of the equivalent current density (|ΔJeq|/Δt) together with the occurrence of modeled GIC in the European high‐voltage power grids (1996–2008). Typically, when intense |ΔJeq|/Δt occurred, geomagnetic activity extended to latitudes <60°, Kp ≥ 8, and modeling suggested large GIC in the European high‐voltage power grids. Intense, although short‐lived, |ΔJeq|/Δt also occurred when geomagnetic activity was confined to latitudes >60°. In such cases, typically 5≤Kp<8, and modeling suggested that there were no large GIC in the European high‐voltage power grids. Intense |ΔJeq|/Δt and GIC occurred preferentially before midnight or at dawn and were rare after noon. There was a seasonal peak in October and a minimum around midsummer. Intense |ΔJeq|/Δt and GIC occurred preferentially in the declining phase of the solar cycle and were rare around solar minima. A longer perspective (1975–2013) was obtained by comparison with the time derivative of the magnetic field from the IMAGE station Nurmijärvi (NUR, MLAT ∼57°). NUR data indicated that the quietness of summer months may have been due to a coincidental lack of intense storms during the shorter period. NUR data agreed with the increased activity in the declining phase but demonstrated that extreme events could also occur during solar minima.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.