A genome-wide microRNA (miRNome) screen coupled with high-throughput monitoring of protein levels reveals complex, modular miRNA regulation of the EGFR-driven cell-cycle network, and identifies new miRNAs that can suppress breast cancer cell proliferation.
The genes encoding microRNAs of the human miR-200 family map to fragile chromosomal regions and are frequently downregulated upon tumor progression. Although having been reported to regulate epithelial-tomesenchymal transition and transforming growth factorbeta-driven cell invasion, the role of the miR-200 family in EGF-driven breast cancer cell invasion, viability, apoptosis and cell cycle progression is still unknown. In particular, there is no study comparing the roles of the two clusters of this miRNA family. In this study, we show for the first time that miR-200 family members differentially regulate EGF-driven invasion, viability, apoptosis and cell cycle progression of breast cancer cells. We showed that, all miR-200 family members regulate EGFdriven invasion, with the miR-200bc/429 cluster showing stronger effects than the miR-200a/141 cluster. Furthermore, expression of the miR-200a/141 cluster results in G1 arrest supported by increased p27/Kip1 and decreased cyclin dependent kinase 6 expression. In contrast, expression of the 200bc/429 cluster decreases G1 population and increases G2/M phase, in line with the observed reduction of p27/Kip1 and upregulation of the inhibitory phosphorylation of Cdc25C, respectively. To test the hypothesis that phenotypical differences observed between the two clusters are caused by differential targeting spectrums, we performed genome-wide microarray profiling in combination with gain-of-function studies. This identified phospholipase C gamma 1 (PLCG1), which was downregulated only by the miR-200bc/429 cluster, as a potential candidate contributing to these phenotypical differences. Luciferase reporter assays validated PLCG1 as a direct functional target of miR-200bc/429 cluster, but not of miR-200a/141 cluster. Finally, loss of PLCG1 in part mimicked the effect of miR-200bc/429 overexpression in viability, apoptosis and EGF-driven cell invasion of breast cancer cells. Our results suggest that the miR-200 family has a tumor-suppressor function by negatively regulating EGF-driven cell invasion, viability and cell cycle progression in breast cancer.
BackgroundTMPRSS2-ERG gene fusions occur in about 50% of all prostate cancer cases and represent promising markers for molecular subtyping. Although TMPRSS2-ERG fusion seems to be a critical event in prostate cancer, the precise functional role in cancer development and progression is still unclear.MethodsWe studied large-scale gene expression profiles in 47 prostate tumor tissue samples and in 48 normal prostate tissue samples taken from the non-suspect area of clinical low-risk tumors using Affymetrix GeneChip Exon 1.0 ST microarrays.ResultsComparison of gene expression levels among TMPRSS2-ERG fusion-positive and negative tumors as well as benign samples demonstrated a distinct transcriptional program induced by the gene fusion event. Well-known biomarkers for prostate cancer detection like CRISP3 were found to be associated with the gene fusion status. WNT and TGF-β/BMP signaling pathways were significantly associated with genes upregulated in TMPRSS2-ERG fusion-positive tumors.ConclusionsThe TMPRSS2-ERG gene fusion results in the modulation of transcriptional patterns and cellular pathways with potential consequences for prostate cancer progression. Well-known biomarkers for prostate cancer detection were found to be associated with the gene fusion. Our results suggest that the fusion status should be considered in retrospective and future studies to assess biomarkers for prostate cancer detection, progression and targeted therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.