Rotor blades of wind turbines are subjected to high-cycle fatigue during their lifetime of 20-25 years. To show that a blade design fulfils the normative requirements, the test campaign usually consists of two consecutive cyclic tests, i.e., in the flapwise and lead-lag directions. The fatigue test excites the blade close to its corresponding natural frequency. Combining the two uniaxial tests into one biaxial test excites the blade in both directions simultaneously. Using the same excitation frequency for both directions results in the blade cross-sections describing an elliptical deflection path. To realize such a test while still exciting close to resonance, the natural frequencies for the two directions need to be equalized with the aid of decoupled masses and stiffness elements. This approach reduces the testing time, and induces a more realistic loading which is comparable with field conditions while keeping the energy consumption of the hydraulic actuation low. This work describes the concept of the elliptical biaxial rotor blade fatigue test with resonant excitation using a commercial blade design. To this end, the design model, which uses both a transient and a harmonic simulation, is validated with the experimental results of the test. The simulation model and the experiment agree well with each other in terms of displacements and loads along the blade.
In this paper an aerodynamic measurement system is presented that can be installed as a retrofit on virtually any onshore turbine. The aerodynamic measurement system consists of pressure sensors embedded in thin glass-fiber shells, which are glued to the rotor blades. Additionally, an aerodynamic probe is attached to outboard side the shells with a thin flange. In this study the system was installed on an 8 MW offshore prototype turbine located in Bremerhaven. It was mounted at two sections of one of the rotor blades with 72 pressure sensors in total (18 sensors each on the pressure side and suction side, respectively). Additionally, at each section an aerodynamic probe with 5 sensors was installed in front of the leading edge to measure inflow speed and direction. Results were compared to CFD simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.