For aircraft gas turbines as well as for industrial gas turbines current and future developments aim at the implementation of lean premixed-prevaporized (LPP) combustor techniques. For the development and optimization of these combustors powerful CFD-codes are required. A new code developed at the Institut für Thermische Strömungsmaschinen (ITS), University of Karlsruhe, provides detailed information on the gas flow as well as on the propagation and evaporation characteristics of liquid wall films inside combustors. The flow characteristics of the gas phase are predicted using a Finite-Volume 3D-Navier-Stokes code with k-ε turbulence modeling. To calculate the evaporation characteristics of a propagating wall film, a two-dimensional wall film model based on the boundary layer equations is proposed.
The present paper comprises a comparison between calculations and experiments for the verification of the code and a detailed study on the evaporation characteristics of fuel films. The results obtained allow judgement to be made on the risk of coke formation on the prefilming surface and suggest that in some operating points a LPP combustor can be operated utilizing solely film evaporation. In addition, the computer code developed also accounts for many familiar types of shear driven film flows such as internal prefilming air blast atomizer flows for example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.