Falls are a major cause for morbidity and mortality in the ageing society. Inertial sensor based gait assessment including the analysis of the heel and toe clearance can be an indicator for the risk of falling. This paper presents a method for calculating the continuous heel and toe clearance without the knowledge of the shoe dimensions as well as the foot angle in the sagittal plane. These gait parameters were validated using an optical motion capture system. 20 healthy subjects from 3 different age groups (young, mid age, old) performed gait trials with different stride lengths and stride velocities. We obtained low mean absolute errors, low standard deviations and high Pearson correlations (0.91-0.99) for all gait parameters. In summary, we implemented a viable algorithm for the calculation of the heel and toe clearance without knowing the shoe dimensions as well as the foot angle in sagittal plane. We conclude that the given method is applicable for a mobile and unobtrusive gait assessment for healthy subjects from all age classes.
Trajectory optimization with musculoskeletal models can be used to reconstruct measured movements and to predict changes in movements in response to environmental changes. It enables an exhaustive analysis of joint angles, joint moments, ground reaction forces, and muscle forces, among others. However, its application is still limited to simplified problems in two dimensional space or straight motions. The simulation of movements with directional changes, e.g. curved running, requires detailed three dimensional models which lead to a high-dimensional solution space. We extended a full-body three dimensional musculoskeletal model to be specialized for running with directional changes. Model dynamics were implemented implicitly and trajectory optimization problems were solved with direct collocation to enable efficient computation. Standing, straight running, and curved running were simulated starting from a random initial guess to confirm the capabilities of our model and approach: efficacy, tracking and predictive power. Altogether the simulations required 1 h 17 min and corresponded well to the reference data. The prediction of curved running using straight running as tracking data revealed the necessity of avoiding interpenetration of body segments. In summary, the proposed formulation is able to efficiently predict a new motion task while preserving dynamic consistency. Hence, labor-intensive and thus costly experimental studies could be replaced by simulations for movement analysis and virtual product design.
When designing sports equipment, it is often desirable to predict how certain design parameters will affect human performance. In many instances, this requires a consideration of human musculoskeletal mechanics and adaptive neuromuscular control. Current computational methods do not represent these mechanisms, and design optimization typically requires several iterations of prototyping and human testing. This paper introduces a computational method based on musculoskeletal modeling and optimal control, which has the capability to predict the effect of mechanical equipment properties on human performance. The underlying assumption is that users will adapt their neuromuscular control according to an optimality principle, which balances task performance with a minimization of muscular effort. The method was applied to the prediction of metabolic cost and limb kinematics while running and walking with weights attached to the body. A two-dimensional musculoskeletal model was used, with nine kinematic degrees of freedom and 16 muscles. The optimal control problem was solved for two walking speeds and two running speeds, and at each speed, with 200 g and 400 g masses placed at the thigh, knee, shank and foot. The model predicted an increase in energy expenditure that was proportional to the added mass and the effect was largest for a mass placed on the foot. Specifically, the model predicted an energy cost increase of 0.74% for each 100 g mass added to the foot during running at 3.60 m/s. The model also predicted that stride length would increase by several millimetres in the same condition, relative to the model without added mass. These predictions were consistent with previously published human studies. Peak force and activation remained the same in most muscles, but increased by 26% in the hamstrings and by 17% in the rectus femoris for running at 4.27 m/s with 400 g added mass at the foot, suggesting muscle-specific training effects. This work demonstrated that a musculoskeletal model with optimal control can predict the effect of mechanical devices on human performance, and could become a useful tool for design optimization in sports engineering. The theoretical background of predictive simulation also helps explain why human athletes have specific responses when exercising in an altered mechanical environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.