In this study, a spin- and gradient-echo echo-planar imaging (SAGE EPI) MRI pulse sequence is presented that allows simultaneous measurements of gradient-echo and spin-echo dynamic susceptibility-contrast perfusion-weighted imaging (DSC-PWI) data. Following signal excitation, five EPI readout trains were acquired using SAGE EPI, all of them with echo times of less than 100 ms. Contrast agent concentrations in brain tissue were determined based on absolute R2* and R2 estimates rather than relative changes in the signals of individual echo trains, producing T1-independent DSC-PWI data. Moreover, this acquisition technique enabled vessel size imaging through the simultaneous quantification of R2* and R2, without an increase in acquisition time. In this work, the concepts of the SAGE EPI pulse sequence and results in stroke and tumor imaging are presented. Overall, SAGE EPI combined the advantages of higher sensitivity of gradient-echo DSC-PWI acquisitions to the contrast agent passage with the better selectivity of spin-echo DSC-PWI measurements to the microvasculature.
Quantitative blood oxygenation level dependent approaches have been designed to obtain quantitative oxygenation information using MRI. A mathematical model is usually fitted to the time signal decay of a gradient-echo and spin-echo measurements to derive hemodynamic parameters such as the blood oxygen saturation or the cerebral blood volume. Although the results in rats and human brain have been encouraging, recent studies have pointed out the need for independent estimation of one or more variables to increase the accuracy of the method. In this study, a multiparametric quantitative blood oxygenation level dependent approach is proposed. A combination of arterial spin labeling and dynamic susceptibility contrast methods were used to obtain quantitative estimates of cerebral blood volume and cerebral blood flow. These results were combined with T 2 * and T 2 measurements to derive maps of blood oxygen saturation or cerebral metabolic rate of oxygen. In 12 normal subjects, a mean cerebral blood volume of 4.33 6 0.7%, cerebral blood flow of 43.8 6 5.7 mL/min/100 g, blood oxygen saturation of 60 6 6% and cerebral metabolic rate of oxygen 157 6 23 mmol/100 g/min were found, which are in agreement with literature values. The results obtained in this study suggest that this methodology could be applied to study brain hypoxia in the setting of pathology. Magn Reson Med 68:905-911,
The purpose of this study was to estimate magnetic resonance imaging-based brain perfusion parameters from combined multiecho spin-echo and gradient-echo acquisitions, to correct them for T₁₋, T₂₋, and T₂₋*-related contrast agent (CA) extravasation effects, and to simultaneously determine vascular permeability. Perfusion data were acquired using a combined multiecho spin- and gradient-echo (SAGE) echo-planar imaging sequence, which was corrected for CA extravasation effects using pharmacokinetic modeling. The presented method was validated in simulations and brain tumor patients, and compared with uncorrected single-echo and multiecho data. In the presence of CA extravasation, uncorrected single-echo data resulted in underestimated CA concentrations, leading to underestimated single-echo cerebral blood volume (CBV) and mean transit time (MTT). In contrast, uncorrected multiecho data resulted in overestimations of CA concentrations, CBV, and MTT. The correction of CA extravasation effects resulted in CBV and MTT estimates that were more consistent with the underlying tissue characteristics. Spin-echo perfusion data showed reduced large-vessel blooming effects, facilitating better distinction between increased CBV due to active tumor progression and elevated CBV due to the presence of cortical vessels in tumor proximity. Furthermore, extracted permeability parameters were in good agreement with elevated T1-weighted postcontrast signal values.
Combined acquisition of gradient-echo and spin-echo signals in MRI time series reveals additional information for perfusion-weighted imaging and functional magnetic resonance imaging due to differences in the sensitivity of gradient-echo and spin-echo measurements to the properties of the underlying vascular architecture. The acquisition of multiple echo trains within one time frame facilitates the simultaneous estimation of the transversal relaxation parameters R2 and R2*. However, the simultaneous estimation of these parameters tends to be incorrect in presence of slice profile mismatches between signal excitation and subsequent refocusing pulses. It is shown here that improvements in pulse design reduced R2 and R2* estimation errors. Further improvements were achieved by augmented parameter estimation through the introduction of an additional parameter δ to correct for discordances in slice profiles to facilitate more quantitative measurements. Moreover, the analysis of time-resolved acquisitions revealed that the temporal stability of R2 estimates could be increased with improved pulse design, counteracting low contrast-to-noise ratios in spin-echo-based perfusion and functional MRI.
Cerebral blood volume maps are usually acquired using dynamic susceptibility contrast imaging which inherently limits the spatial resolution and signal to noise ratio of the images. In this study, we used ferumoxytol (AMAG Pharmaceuticals, Inc., Cambridge, MA), an FDA-approved compound, to obtain high-resolution cerebral blood volume maps with a steady-state approach in seven healthy volunteers. R2* maps (0.8 × 0.8 × 1 mm(3)) were acquired before and after injection of ferumoxytol and an intraindividual normalization protocol was used to obtain quantitative values. The results show excellent contrast between white and gray matter as well as fine highly detailed vascular structures. An average blood volume of 4% was found in the brain of all volunteers, consistent with prior literature values. A linear relationship was found between ferumoxytol dose (mg/kg) and ΔR2* (1/s) in gray (R(2) = 0.98) and white matter (R(2) = 0.98). A quadratic relationship was found in the sagittal sinus (R(2) = 0.98). The cerebral blood volume maps compare well with lower resolution dynamic susceptibility contrast-MRI and their use should improve the evaluation of small and heterogeneous lesions and facilitate intrapatient and interpatient comparisons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.