Within the silicon photovoltaics (PV) community, there are many approaches, tools, and input parameters for simulating solar cells, making it difficult for newcomers to establish a complete and representative starting point and imposing high requirements on experts to tediously state all assumptions and inputs for replication. In this review, we address these problems by providing complete and representative input parameter sets to simulate six major types of crystalline silicon solar cells. Where possible, the inputs are justified and up-to-date for the respective cell types, and they produce representative measurable cell characteristics. Details of the modeling approaches that can replicate the simulations are presented as well. The input parameters listed here provide a sensible and consistent reference point for researchers on which to base their refinements and extensions.
We investigate plasmon resonances in gold nanoparticles to enhance the quantum yield of upconverting materials. For this purpose, we use a rate equation model that describes the upconversion of trivalent erbium based upconverters. Changes of the optical field acting on the upconverter and the changes to the transition probabilities of the upconverter in the proximity of a gold nanoparticle are calculated using Mie theory and exact electrodynamic theory respectively. With this data, the influence on the luminescence of the upconverter is determined using the rate equation model. The results show that upconversion luminescence can be increased in the proximity of a spherical gold nanoparticle due to the change in the optical field and the modification of the transition rates.
The upconversion of infrared photons is a promising possibility to enhance solar cell efficiency by producing electricity from otherwise unused sub-band-gap photons. We present a rate equation model and the relevant processes in order to describe the upconversion of near-infrared photons. The model considers stimulated and spontaneous processes, multi-phonon relaxation, and energy transfer between neighboring ions. The input parameters for the model are experimentally determined for the material system, beta-NaEr(0.2)Y(0.8)F(4). The determination of the transition probabilities, also known as the Einstein coefficients, is the focus of the parameterization. The influence of multi-phonon relaxation and energy transfer on the upconversion are evaluated and discussed in detail. Since upconversion is a non-linear process, the irradiance dependence of the simulations is investigated and compared to the experimental data of quantum efficiency measurements. The results are very promising and indicate that upconversion is reasonably physically described by the rate equations. Therefore, the presented model will be the basis for further simulations concerning various applications of upconversion, such as in combination with plasmon resonances in metal nanoparticles
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.