In this article a new method for the photolithographical deposition of temperature-sensitive hydrogels is presented. The method can be used in conjunction with standard 365 nm UV-photolithography to accurately dimension and position temperature-sensitive hydrogel microactuators in a highly parallel fashion. A number of characteristics of the hydrogels were investigated. These include: the photolithographical reproduction quality, the effect of the crosslinking density in the hydrogels on their swelling behavior, the swelling hysteresis behavior, the effect of dimensional constraints on the swelling of the hydrogels and the effect of copolymerization with an ionizable comonomer on the temperature behavior of the hydrogels. The method presents a considerable improvement in the microfabrication of temperature-sensitive hydrogel microactuators and has potential for the mass-fabrication of these interesting microactuators.
We present a novel concept of filtering based on depletion zone isotachophoresis (dzITP). In the micro/nanofluidic filter, compounds are separated according to isotachophoretic principles and simultaneously released selectively along a nanochannel-induced depletion zone. Thus, a tunable low-pass ionic mobility filter is realized. We demonstrate quantitative control of the release of fluorescent compounds through the filter using current and voltage actuation. Two modes of operation are presented. In continuous mode, supply, focusing, and separation are synchronized with continuous compound release, resulting in trapping of specific compounds. In pulsed mode, voltage pulses result in release of discrete zones. The dzITP filter was used to enhance detection of 6-carboxyfluorescein 4-fold over fluorescein, even though it had 250× lower starting concentration. Moreover, specific high-mobility analytes were extracted and enriched from diluted raw urine, using fluorescein as an ionic mobility cutoff marker and as a tracer for indirect detection. Tunable ionic filtering is a simple but essential addition to the capabilities of dzITP as a versatile toolkit for biochemical assays.
The far infrared spectra of some solid and molten alkali metal nitrates and sodium nitrite have been measured at various temperatures. The dipole moment correlation functions obtained from these spectra by Fourier transformation are presented and are connected with a solid state formalism. These dipole correlation functions give a measure of the lifetime of the correlated motions in the liquid phase. The lifetimes for the molten salts are of the order of 10-1 2-10-13 sec. High anharmonicity and large fluctuations characterize the liquid phase.
We report the use of pendant droplet evaporation for exchange of eluents for (1)H nuclear magnetic resonance ((1)H NMR) purposes. Analytes are fed and retained in 500 nL droplets, which are concentrated by evaporation and subsequently redissolved in deuterated solvent. Droplet size is monitored by machine vision (MV), and heating rates are adjusted concordingly to maintain a stable droplet volume. Evaporation control is independent of solvent properties, and the setup handles feed rates up to 7 μL min(-1). The interface is capable of exchanging up to 90% of solvent for deuterated solvent, with a good recovery and repeatability for tomato extracts (Solanum lycopersicum). The system was capable of handling both polar and nonpolar analytes in one run. Volatiles such as formate, acetate, and lactate and the thermosensitive compound epigallocatechin gallate were recovered without significant losses. Ethanol and propionate were recovered with significant losses due to the formation of a minimum boiling azeotrope. The current setup is ideally suited for on- and off-line hyphenation of liquid chromatography and NMR, as it is comprehensive, fully automated, and easy to operate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.