We used measures of the human event-related brain potential (ERP) to investigate the neural mechanisms underlying error processing during action observation. Participants took part in two conditions, a task execution condition and a task observation condition. We found that activity in both the medial frontal cortex and the motor cortices, as measured via the error-related negativity and the lateralized readiness potential, respectively, was modulated by the correctness of observed behavior. These data suggest that similar neural mechanisms are involved in monitoring one's own actions and the actions of others.
We assessed the role of the human mirror neuron system (MNS) in complementary actions using functional magnetic resonance imaging while participants prepared to execute imitative or complementary actions. The BOLD signal in the right inferior frontal gyrus and bilateral inferior parietal lobes was greater during preparation of complementary than during imitative actions, suggesting that the MNS may be essential in dynamically coupling action observation to action execution.
Recent research has demonstrated that cortical motor areas are engaged when observing motor actions of others. However, little is known about the possible contribution of the motor system for evaluating the correctness of others' actions. To address this question we designed an MEG experiment in which subjects were executing and observing motor actions with and without errors. In the execution task subjects were asked to make speeded button presses according to instruction cues. During the observation task, they viewed pictures of an actor's hand making button presses which were correct or incorrect according to the cues. Time-frequency representations of the MEG data demonstrated a depression in oscillatory activity in the beta band activity (15-35 Hz) during execution followed by a beta rebound that was stronger for incorrect compared to correct executions. During the observation task, a similar time-course of the beta activity was identified and importantly the modulations were stronger for the observation of incorrect than correct actions. Sources accounting for the difference in beta activity between correct and incorrect actions were localized using a beamforming technique. Both for the execution and observation conditions sources were identified to the dorsal motor areas comprising both primary and pre-motor cortex. Our findings demonstrate that not only is cortical motor activity modulated by action observation, but the modulation increases when the observed action is erroneous. This suggests that the motor system is engaged in evaluating the correctness of the actions of others.
A robust finding in imitation literature is that people perform their actions more readily if they are congruent with the behavior of another person. These action congruency effects are typically explained by the idea that the observation of someone else acting automatically activates our motor system in a directly matching way. In the present study action congruency effects were investigated between an imitation task and a complementary action task. Subjects imitated or complemented a virtual actor's grasp on a manipulandum. In both tasks, a color-cue could be presented forcing subjects to ignore the task rule and execute a predefined grasp. Reaction times revealed a reversal of congruency effects in the complementary action task, suggesting that subjects were able to circumvent the automatic tendency to copy actions or postures of another person. In 2 additional control experiments, congruency effects were replicated, and a Simon effect was identified to underlie faster responses in the imitation task. These results make a case against current theoretical views on imitation and direct matching in favor of more flexible models of perception-action coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.