Ring flips of phenylalanine and tyrosine are a hallmark of protein dynamics. They report on transient breathing motions of proteins. In addition, flip rates also depend on stabilizing interactions in the ground state, like aromatic stacking or cation-π interaction. So far, experimental studies of ring flips have almost exclusively been performed on aromatic rings without stabilizing interactions. Here we investigate ring flip dynamics of Phe and Tyr in the aromatic cluster in GB1. We found that all four residues of the cluster, Y3, F30, Y45 and F52, display slow ring flips. Interestingly, F52, the central residue of the cluster, which makes aromatic contacts with all three others, is flipping significantly faster, while the other rings are flipping with the same rates within margin of error. Determined activation enthalpies and activation volumes of these processes are in the same range of other reported ring flips of single aromatic rings. There is no correlation of the number of aromatic stacking interactions to the activation enthalpy, and no correlation of the ring's extent of burying to the activation volume. Because of these findings, we speculate that F52 is undergoing concerted ring flips with each of the other rings.
NMR spectroscopy allows an all-atom view on pressure-induced protein folding, separate detection of different folding states, determination of their population, and the measurement of the folding kinetics at equilibrium. Here, we studied the folding of protein GB1 at pH 2 in a temperature and pressure dependent way. We find that the midpoints of temperature-induced unfolding increase with higher pressure. NMR relaxation dispersion experiments disclosed that the unfolding kinetics slow down at elevated pressure while the folding kinetics stay virtually the same. Therefore, pressure is stabilizing the native state of GB1. These findings extend the knowledge of the influence of pressure on protein folding kinetics, where so far typically a destabilization by increased activation volumes of folding was observed. Our findings thus point toward an exceptional section in the pressure-temperature phase diagram of protein unfolding. The stabilization of the native state could potentially be caused by a shift of p K values of glutamates and aspartates in favor of the negatively charged state as judged from pH sensitive chemical shifts.
Aromatic side chains are often key residues in enzyme active sites and protein binding sites, making them attractive probes of protein dynamics on the millisecond timescale. Such dynamic processes can be studied by aromatic 13C or 1H CPMG relaxation dispersion experiments. Aromatic 1H CPMG relaxation dispersion experiments in phenylalanine, tyrosine and the six-ring moiety of tryptophan, however, are affected by 3J 1H–1H couplings which are causing anomalous relaxation dispersion profiles. Here we show that this problem can be addressed by site-selective 1H/2H labeling of the aromatic side chains and that artifact-free relaxation dispersion profiles can be acquired. The method has been further validated by measuring folding–unfolding kinetics of the small protein GB1. The determined rate constants and populations agree well with previous results from 13C CPMG relaxation dispersion experiments. Furthermore, the CPMG-derived chemical shift differences between the folded and unfolded states are in excellent agreement with those obtained directly from the spectra. In summary, site-selective 1H/2H labeling enables artifact-free aromatic 1H CPMG relaxation dispersion experiments in phenylalanine and the six-ring moiety of tryptophan, thereby extending the available methods for studying millisecond dynamics in aromatic protein side chains.
Electrostatic interactions significantly contribute to the stability and function of proteins. The stabilizing or destabilizing effect of local charge is reflected in the perturbation of the p K a value of an ionizable group from the intrinsic p K a value. Herein, the charge network of a hyperstable dimeric protein (ribbon–helix–helix (rhh) protein from plasmid pRN1 from Sulfolobus islandicus ) is studied through experimental determination of the p K a values of all ionizable groups. Transitions were monitored by multiple NMR signals per ionizable group between pH 0 and 12.5, prior to a global analysis, which accounted for the effects of neighboring residues. It is found that for several residues involved in salt bridges (four Asp and one Lys) the p K a values are shifted in favor of the charged state. Furthermore, the p K a values of residues C40 and Y47, both located in the hydrophobic dimer interface, are shifted beyond 13.7. The necessary energy for such a shift is about two‐thirds of the total stability of the protein, which confirms the importance of the hydrophobic core to the overall stability of the rhh protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.