Patients are exposed to X rays when undergoing medical examinations in diagnostic radiology. Exposure data acquired and assessed in Germany for the year 1997 resulted in a mean annual effective dose of 2 +/- 0.5 mSv per head of the population, thereby reaching or exceeding the average level of environmental radiation in many cases. The underlying frequency of medical X-ray examinations was approximately 136 million, i.e. approximately 1.7 examinations annually per head of the population. For comparison, corresponding data of other countries were extracted from the UNSCEAR 2000 report or originate from the literature. Data analysis shows significant differences in national radiological practices and a very uneven distribution of patient doses amongst the world population. The mean annual effective dose per head of the population varies by up to a factor of 60 between health care level I and IV countries, and still by a factor of approximately 6 within health care level I countries. While projection radiography has succeeded in reducing dose consumption, computed tomography and radiological interventions have given rise to a significant growth of patient exposure, and interventional radiology can even exceed thresholds for deterministic radiation effects. Patient exposure is further shown to result from misadministration and retakes of X-ray examinations, usually not registered, as well as from technical failures of X-ray facilities, which can cause significantly enhanced exposure times. Corresponding data are presented and comments are made on the international situation of non-harmonised data collection on patient exposure as well as of parameters affecting the assessment of exposure and risk.
The aim of our study was to test the feasibility and reliability of personal dosimetry. Twenty-four hour exposure assessment was carried out in 42 children, 57 adolescents, and 64 adults using the Maschek dosimeter prototype. Self-reported exposure to mobile phone frequencies were compared with the dosimetry results. In addition, dosimetry readings of the Maschek device and those of the Antennessa DSP-090 were compared in 40 subjects. Self-reported exposures were not associated with dosimetry readings. The measurement results of the two dosimeters were in moderate agreement (r(Spearman) = 0.35; P = .03). Personal dosimetry for exposure to mobile phone base station might be feasible in epidemiologic studies. However, the consistency seems to be moderate.
The shielding properties of two different lead-free materials-tin and a compound of 80% tin and 20% bismuth-for protective clothing are compared with those of lead for three typical x-ray spectra generated at tube voltages of 60, 75, and 120 kV. Three different quantities were used to compare the shielding capability of the different materials: (1) Air-kerma attenuation factors in narrow-beam geometry, (2) air-kerma attenuation factors in broad-beam geometry, and (3) ratios of organ and effective doses in the human body for a whole-body irradiation with a parallel beam directed frontally at the body. The thicknesses of tin (0.45 mm) and the tin/bismuth compound (0.41 mm) to be compared against lead correspond to a lead equivalence value of 0.35 mm for the 75 kV spectrum. The narrow-beam attenuation factors for 0.45 mm tin are 54% and 32% lower than those for 0.35 mm lead for 60 and 120 kV; those for 0.41 mm tin/bismuth are 12% and 32% lower, respectively. The decrease of the broad-beam air-kerma attenuation factors compared to lead is 74%, 46%, and 41% for tin and 42%, 26%, and 33% for tin/bismuth and the spectra at 60, 75, and 120 kV, respectively. Therefore, it is recommended that the characterization of the shielding potential of a material should be done by measurements in broad-beam geometry. Since the secondary radiation that is mainly responsible for the shielding reduction in broad-beam geometry is of low penetrability, only more superficially located organs receive significantly enhanced doses. The increase for the dose to the glandular breast tissue (female) compared to being shielded by lead is 143%, 37%, and 45% when shielded by tin, and 35%, 15%, and 39% when shielded by tin/bismuth for 60, 75, and 120 kV, respectively. The effective dose rises by 60%, 6%, and 38% for tin, and 14%, 3% and, 35% for tin/bismuth shielding, respectively.
This review article provides an overview on the results of studies conducted by the authors to improve the current personal protection concept in the clinical application of x-rays. With the aid of personal dose equivalent measurements during radiologically guided clinical interventions, laboratory tests using the Alderson-Rando phantom as well as Monte Carlo simulations various x-ray application scenarios were investigated. The organ doses and the effective doses of staff persons standing near the patient were determined. The 3D-attenuation properties of protective clothing under the scattered radiation emitted by the patient play a special role here. With regard to the minimisation of the quantity ‘effective dose’ the protection of the lower body from the gonads to the chest is of particular importance, since 80% of the effective dose is contributed by this region of the body. In contrast, protection of the back plays a subordinate role. Protective aprons optimised in terms of effective dose can be significantly lighter than conventional aprons, providing equal protection. The assessment of the attenuation properties of protective clothing should be based on the risk-related dose quantity, effective dose, rather than lead equivalent. In the future, the evaluation of radiation protective clothing could be based on the calculation of the effective dose assuming standardised irradiation conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.