Turnip mosaic potyvirus (TuMV) is probably the most widespread and damaging virus that infects cultivated brassicas worldwide. Previous work has indicated that the virus originated in western Eurasia, with all of its closest relatives being viruses of monocotyledonous plants. Here we report that we have identified a sister lineage of TuMV-like potyviruses (TuMV-OM) from European orchids. The isolates of TuMV-OM form a monophyletic sister lineage to the brassica-infecting TuMVs (TuMV-BIs), and are nested within a clade of monocotyledon-infecting viruses. Extensive host-range tests showed that all of the TuMV-OMs are biologically similar to, but distinct from, TuMV-BIs and do not readily infect brassicas. We conclude that it is more likely that TuMV evolved from a TuMV-OM-like ancestor than the reverse. We did Bayesian coalescent analyses using a combination of novel and published sequence data from four TuMV genes [helper component-proteinase protein (HC-Pro), protein 3(P3), nuclear inclusion b protein (NIb), and coat protein (CP)]. Three genes (HC-Pro, P3, and NIb), but not the CP gene, gave results indicating that the TuMV-BI viruses diverged from TuMV-OMs around 1000 years ago. Only 150 years later, the four lineages of the present global population of TuMV-BIs diverged from one another. These dates are congruent with historical records of the spread of agriculture in Western Europe. From about 1200 years ago, there was a warming of the climate, and agriculture and the human population of the region greatly increased. Farming replaced woodlands, fostering viruses and aphid vectors that could invade the crops, which included several brassica cultivars and weeds. Later, starting 500 years ago, inter-continental maritime trade probably spread the TuMV-BIs to the remainder of the world.
A disease showing chlorosis, leaf rolling and stunting in Vicia faba and other legumes was observed in West Asia and North Africa during 1987-1988. The putative causal agent could not be transmitted mechanically, but could be transmitted by aphids, most efficiently by Acyrthosiphon pisum, in the persistent manner. Further studies revealed isometric virus-like particles (VLPs) closely associated with the disease, although their infectivity could not be demonstrated by membrane feeding. These particles, measuring c. 18 nm in diameter and containing a capsid protein of about 22 kDa and ssDNA of about 1 kb, are hereafter designated faba bean necrotic yellows virus (FBNYV). A high proportion of circular nucleic acid molecules of about 0.9 kb were visualised by electron microscopy. Hybridisation analysis of cloned viral DNA suggests that the circular genome is larger than 1 kb and consists of several components of similar size. An antiserum produced against FBNYV was used in ELISA, immunoelectron microscopy (IEM) and Western blot experiments for virus detection in aphids and field samples and for serological comparison with other viruses. Weak heterologous reactions between FBNYV and subterranean clover stunt virus (SCSV) were detected in IEM, but could not be confirmed in ELISA or Western blots. No serological relationship to banana bunchy top virus (BBTV) was detected. Using a direct tissue blot immunoassay (TBIA), FBNYV was detected in vascular tissue of infected faba bean leaves and stems.
We describe a new plant single-stranded DNA (ssDNA) virus, a nanovirus isolate originating from the faba bean in Ethiopia. We applied rolling circle amplification (RCA) to extensively copy the individual circular DNAs of the nanovirus genome. By sequence analyses of more than 208 individually cloned genome components, we obtained a representative sample of eight polymorphic swarms of circular DNAs, each about 1 kb in size. From these heterogeneous DNA populations after RCA, we inferred consensus sequences of the eight DNA components of the virus genome. Based on the distinctive molecular and biological properties of the virus, we propose to consider it a new species of the genus Nanovirus and to name it faba bean necrotic stunt virus (FBNSV). Selecting a representative clone of each of the eight DNAs for transfer by T-DNA plasmids of Agrobacterium tumefaciens into Vicia faba plants, we elicited the development of the typical FBNSV disease symptoms. Moreover, we showed that the virus thus produced was readily transmitted by two different aphid vector species, Aphis craccivora and Acyrthosiphon pisum. This represents the first reconstitution of a fully infectious and sustainably insect-transmissible nanovirus from its cloned DNAs and provides compelling evidence that the genome of a legume-infecting nanovirus is typically comprised of eight distinct DNA components.
Nanoviruses possess a multipartite single-stranded DNA genome and are naturally transmitted to plants by various aphid species in a circulative non-propagative manner. Using the cloned genomic DNAs of faba bean necrotic stunt virus (FBNSV) for reconstituting nanovirus infections we analyzed the necessity of different virus components for infection and transmission by aphids. We found that in the absence of DNA-U1 and DNA-U2 symptom severity decreased, and in the absence of DNA-U1 the transmission efficiency decreased. Most significantly, we demonstrated that the protein encoded by DNA-N (NSP) is mandatory for aphid transmission. Moreover, we showed that the NSP of FBNSV could substitute for that of a distantly related nanovirus, pea necrotic yellow dwarf virus. Altering the FBNSV NSP by adding 13 amino acids to its carboxy-terminus resulted in an infectious but non-transmissible virus. We demonstrate that the NSP acts as a nanovirus transmission factor, the existence of which had been hypothesized earlier.
Circumstantial evidence suggests that the genome of Faba bean necrotic yellows virus (FBNYV), a nanovirus, consists of eight distinct, circular, single-stranded DNAs, each of about 1 kb and encoding only one protein. Here, the use of cloned full-length FBNYV DNAs for reproducing FBNYV-like symptoms in Vicia faba, the principal natural host of FBNYV, is reported. Characteristic symptoms of FBNYV infection were obtained in faba bean plants following biolistic DNA delivery or agroinoculation with all eight FBNYV DNAs. Although the eight different DNAs have been invariably detected in field samples infected with the various geographical FBNYV isolates, experimental infection with different combinations of fewer than eight DNAs also led to typical FBNYV symptoms. Even only five genome components, DNA-R, DNA-S, DNA-M, DNA-U1 and DNA-U2, were sufficient for inducing disease symptoms in V. faba upon agroinoculation. Symptomatic plants agroinoculated or bombarded with eight DNAs contained typical FBNYV virions; however, the virus was not transmitted by Aphis craccivora or Acyrthosiphon pisum, two efficient aphid vectors of FBNYV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.