Visible to near-infrared (NIR) reflectance spectra and mid-IR transmittance spectra are presented here for a collection of dioctahedral smectites. Analysis of the structural OH vibrations is performed by comparing the NIR combination and overtone bands with fundamental stretching and bending absorption features in the mid-IR region. Second derivatives are used to determine the actual band centres, which are often shifted slightly by a spectral continuum in the reflectance or transmittance spectra. New bands have been identified near 4170 and 4000 cm–1 in the NIR spectra of nontronite with tetrahedral substitution. A related band is observed near 4100 cm–1 for montmorillonites with substantial tetrahedral and/or octahedral substitution. These bands are correlated with the mid-IR bands near 680 cm–1 for nontronite and near 630 cm–1 for montmorillonite. Comparison of the OH overtone and combination bands with the fundamental stretching and bending vibrations gives consistent results.
Abstract. Determining the mineralogy of the Martian surface material provides information about the past and present environments on Mars which are an integral aspect of whether or not Mars was suitable for the origin of life. Mineral identification on Mars will most likely be achieved through visible-infrared remote sensing in combination with other analyses on landed missions. Therefore, understanding the visible and infrared spectral properties of terrestrial samples formed via processes similar to those thought to have occurred on Mars is essential to this effort and will facilitate site selection for future exobiology missions to Mars. Visible to infrared reflectance spectra are presented here for the fine-grained fractions of altered tephra/lava from the Haleakala summit basin on Maui, the Tarawera volcanic complex on the northern island of New Zealand, and the Greek Santorini island group. These samples exhibit a range of chemical and mineralogical compositions, where the primary minerals typically include plagioclase, pyroxene, hematite, and magnetite. The kind and abundance of weathering products varied substantially for these three sites due, in part, to the climate and weathering environment. The moist environments at Santorini and Tarawera are more consistent with postulated past environments on Mars, while the dry climate at the top of Haleakala is more consistent with the current Martian environment. Weathering of these tephra is evaluated by assessing changes in the leachable and immobile elements, and through detection of phyllosilicates and iron oxide/oxyhydroxide minerals. Identifying regions on Mars where phyllosilicates and many kinds of iron oxides/oxyhydroxides are present would imply the presence of water during alteration of the surface material. Tephra samples altered in the vicinity of cinder cones and steam vents contain higher abundances of phyllosilicates, iron oxides, and sulfates and may be interesting sites for exobiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.