Abstract. 1. Chrysoperla carnea is an important predatory insect in maize. To assess the ecological effects of Bt-maize, expressing the Cry1Ab protein, on larvae of this predator, the following factors were examined: (1) the performance of three prey herbivores (Rhopalosiphum padi, Tetranychus urticae, and Spodoptera littoralis) on transgenic Bt and non-transgenic maize plants; (2) the intake of the Cry1Ab toxin by the three herbivores; and (3) the effects on C. carnea when fed each of the prey species.2. The intrinsic rate of natural increase (r m ) was used as a measure of performance for R. padi and T. urticae. No difference in this parameter was observed between herbivores reared on Bt or non-transgenic plants. In contrast, a higher mortality rate and a delay in development were observed in S. littoralis larvae when fed Bt-maize compared with those fed the control maize plants.3. The ingestion of Cry1Ab toxin by the different herbivores was measured using an immunological assay (ELISA). Highest amounts of Cry1Ab toxin were detected in T. urticae, followed by S. littoralis, and only trace amounts detected in R. padi.4. Feeding C. carnea with T. urticae, which were shown to contain the Cry1Ab toxin, or with R. padi, which do not ingest the toxin, did not affect survival, development, or weight of C. carnea. In contrast, a significant increase in mortality and a delay in development were observed when predators were fed S. littoralis larvae reared on Bt-maize. 5. A combined interaction of poor prey quality and Cry1Ab toxin may account for the negative effects observed on C. carnea when fed S. littoralis. The relevance of these findings to the ecological risks of Bt-maize on C. carnea is discussed.
As a part of a risk assessment procedure, the impact of Bt maize expressing Cry1Ab toxin on the thrips Frankliniella tenuicornis (Uzel) (Thysanoptera: Thripidae) was investigated, and the potential risks for predators feeding on thrips on Bt maize were evaluated. The effects of Bt maize on F. tenuicornis were assessed by measuring life-table parameters when reared on Bt and non-Bt maize. The content of Cry1Ab toxin in different stages of F. tenuicornis reared on Bt maize and the persistence of the toxin in adults where determined in order to evaluate the possible exposure of predators when feeding on thrips. In addition, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) was used as a model predator to assess how the behaviour of prey and predator may influence the exposure of a natural enemy to the Bt toxin. Life-table parameter results showed that F. tenuicornis was not affected when it was reared on Bt maize. This indicates that the potential for prey quality-mediated effects on predators is low. Bt content was highest in thrips larvae and adults, and negligible in the non-feeding prepupal and pupal stages. The persistence of the Cry1Ab toxin in adult F. tenuicornis was short, resulting in a decrease of 97% within the first 24 h. Predation success by young C. carnea larvae varied among the thrips stages, indicating that exposure of predators to Bt toxin can additionally depend on the prey stage. When combining the current knowledge of the susceptibility of major thrips predators with our findings showing no potential for prey quality-mediated effects, relatively low toxin content in thrips as well as short persistence, it can be concluded that the risks for predators when feeding on thrips in or next to Bt maize fields are negligible.
The investigation of Neoseiulus cucumeris in the context of the ecological risk assessment of insect resistant transgenic plants is of particular interest as this omnivorous predatory mite species is commercially available and considered important for biological control. In a multitrophic feeding experiment we assessed the impact of Bt maize on the performance of N. cucumeris when offered spider mites (Tetranychus urticae) reared on Bt (Bt11, Syngenta) or non-Bt maize (near isogenic line) and Bt or non-Bt maize pollen as a food source. Various parameters including mortality, development time, oviposition rate were measured. Spider mites were used as a prey for N. cucumeris, since these herbivores are known to contain similar levels of Cry1Ab toxin, when reared on Bt maize, as those found in the transgenic leaf material. In contrast, toxin levels in pollen of this transgenic cultivar are very low. No differences in any of the parameters were found when N. cucumeris was fed with spider mites reared on Bt and non-Bt maize. Pollen was shown to be a less suitable food source for this predator as compared to spider mites. Moreover, subtle effects on female N. cucumeris (9% longer development time and 17% reduced fecundity) were measured when fed with pollen originating from Bt maize as compared to non-Bt maize pollen. Our findings indicate that the predatory mite N. cucumeris is not sensitive to the Cry1Ab toxin as no effects could be detected when offered Bt-containing spider mites, and that the effects found when fed with Bt maize pollen can be assigned to differences in nutritional quality of Bt and non-Bt maize pollen. The significance of these findings is discussed with regard to the ecological relevance for risk assessment of transgenic plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.