The purpose of this study is to develop a simple and practical controller design method without modeling controlled objects. In this technique, modeling of the controlled object is not necessary and a controller is designed with an actuator model, which includes a single-degree-of-freedom virtual structure inserted between the actuator and the controlled object. The parameters of the virtual structure are determined so that indirect active vibration suppression is effectively achieved by considering the frequency transfer function from the vibration response of the controlled object to that of the virtual structure. Since the actuator model, which includes a virtually controlled object, is a simple low-order system, a controller with high control performance can be designed by traditional model-based optimal control theory. In this research, a mixed [Formula: see text] controller is designed considering both control performance and robust stability. The effectiveness of the proposed method is validated experimentally. The robustness of the controller is demonstrated by applying the same controller to various structures.
This paper proposes a vibration control method of an automotive drive system with backlash to maintain stability and control performance under the control period constraint due to an engine's characteristics. Reducing the vibrations of the automotive drive system remains a challenge when improving the riding comfort and driving performance of automobiles. In particular, a vibration control method must be developed to compensate for the backlash of differential gears because this element degrades the vibration control performance. Furthermore, engines used as actuators have a constraint in which control cycles are made longer due to restrictions of the input update. The roughly updated cycles adversely affect not only the high vibration control performance but also the stability. In this study, we validate the control system for an automotive drive system with backlash by considering the input update limitation. First, a basic experimental device, which abstracts actual vehicles to focus on the influence due to backlash while reflecting only the basic structure of an automotive drive system, is created. Then to cope with the control cycle constraint, sampled-data H2 control is applied. The servo system is constructed by applying an approximate integrator and frequency shaping. As an approach to compensate for backlash, we propose a simple and practical control mode switching technique. Finally, the effectiveness of the control system is verified experimentally. The results are compared to the control results with those obtained by the traditional discrete approximation.
In automotive drive systems, differential gear backlash degrades the control performance. Specifically, a shock torque, which is generated when the gear runs freely and collides with the backlash, increases the vibration amplitude. Consequently, it is important to develop a vibration control method to suppress the adverse effect of nonlinearity due to backlash. Furthermore, considering implementations on actual vehicles, design at the development site, and mass production, a simple and practical control method is necessary. This paper describes the configuration of a basic experimental device, which abstracts an actual vehicle to focus on the influence due to backlash while reflecting the basic structure of an automotive drive system. Next, a basic controller is designed using a mixed H2/H∞ control theory, and a servo system is constructed to track the target value. A simple control mode switching algorithm is proposed for backlash compensation. This algorithm is suited to practical applications because it uses only an output without a state estimation and it compensates for performance deteriorations due to the nonlinearity by operating a single linear controller. Finally, simulations and experiments verify the effectiveness of the proposed control system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.