Resumo -As redes ópticas passivas (PON), em virtude da oferta de maior largura de banda a custos relativamente baixos, vêm se destacando como possível candidata para suprir a demanda dos novos serviços como, tráfego de voz, vídeo, dados e de serviços móveis, exigidos pelos usuários finais. Uma importante candidata, para realizar o controle de acesso nas PONs, é a técnica de acesso múltiplo por divisão de código óptico (OCDMA), por apresentar características relevantes, como maior segurança e capacidade flexível sob demanda. Neste contexto, este trabalho apresenta uma nova técnica de classificação de códigos OCDMA, com o uso de redes neurais artificiais, mais precisamente, mapas auto-organizáveis de Kohonen (SOM), importante para que o sistema de gerenciamento da rede possa oferecer uma maior segurança para os usuários, aumentando a qualidade de serviço (QoS). A taxa de acerto na classificação dos códigos foi de 87.5%, o que justifica o desenvolvimento e estudo de técnicas de identificação de padrões para melhorar o processo de detecção de códigos ópticos.Palavras-chave -Rede Neural Artificial, códigos OCDMA, rede óptica passiva, mapas auto-organizável de Kohonen.Abstract -Passive optical networks (PON), due to the provision of higher bandwidth at relatively low cost, have been excelling as a possible candidate to meet the demand of new services, such as voice traffic, video, data and mobile services, as required by end users. An important candidate to perform access control in PONs, is the Optical Code-Division Multiple-Access (OCDMA) technique, due to relevant characteristics, such as improved security and flexible capacity on demand. This work presents a new technique of OCDMA codes classification, using Artificial Neural Networks (ANN), more precisely, the Self-Organizing Maps (SOM) of Kohonen, important for the network management system to provide increased security for users, increasing the quality of service (QoS). The hit rate achieved in the classification of codes was 87.5%, which enables the development and study of the use patterns of identification techniques to aid in the detection process of optical codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.