Biophotonics is defined as the combination of biology and photonics (the physical science of the light). It is a general term for all techniques that deal with the interaction between biological tissues/cells and photons (light). Biophotonics offers a great variety of techniques that can facilitate the early detection of diseases and promote innovative theragnostic approaches. As the COVID-19 infection can be transmitted due to the face-to-face communication, droplets and aerosol inhalation and the exposure to saliva, blood, and other body fluids, as well as the handling of sharp instruments, dental practices are at increased risk of infection. In this paper, a literature review was performed to explore the application of Biophotonics approaches in Dentistry focusing on the COVID-19 pandemic and how they can contribute to avoid or minimize the risks of infection in a dental setting. For this, search-related papers were retrieved from PubMED, Scielo, Google Schoolar, and American Dental Association and Centers for Disease Control and Prevention databases. The body of evidence currently available showed that Biophotonics approaches can reduce microorganism load, decontaminate surfaces, air, tissues, and minimize the generation of aerosol and virus spreading by minimally invasive, time-saving, and alternative techniques in general. However, each clinical situation must be individually evaluated regarding the benefits and drawbacks of these approaches, but always pursuing less-invasive and less aerosol-generating procedures, especially during the COVID-19 pandemic.
Chemical composition of dental enamel has a great relationship with the prevention of caries. The objective of the present work was to evaluate the chemical and morphological changes of femtosecond laser‐irradiated enamel with subablative parameters using Raman spectroscopy, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM). Bovine incisor teeth were used to obtain 30 enamel specimens (5 × 5 mm2). The chemical composition of the control sample was analyzed by Raman spectrometry to acquire the absorption spectrum, delimiting the areas under the carbonate and phosphate bands. This analysis was used to evaluate the change in the chemical composition of the sample after irradiation. The specimens were irradiated (IRR) with a Ti:Sapphire laser system (pulsed and focused modes, femtosecond regime 70 fs, average power of 1 W and exposure time of 15 s). After irradiation, the areas under the carbonate and phosphate absorption bands were delimited in each specimen. Raman spectrometry data were analyzed using Student's t‐test (α = 5%). By comparing the spectra of the IRR and non‐irradiated (NI) specimens, the results showed a significant increase in the area value for the phosphate peaks and a significant reduction in the area value for the carbonate peak and the carbonate:phosphate ratio. CLSM and SEM analyses did not reveal structural alterations in the subsurface nor morphological alterations in the IRR enamel surface, respectively. It was concluded that femtosecond laser irradiation using subablative parameters reduced the carbonate content and the carbonate/phosphate ratio without altering the structure and morphology of the dental enamel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.