Toxoplasma gondii belongs to the Apicomplexan protozoa—an obligate intracellular parasite—causing toxoplasmosis that has a worldwide distribution and is very harmful to both human health and the livestock industry. However, the information on toxoplasmosis in the Qinghai-Tibetan Plateau Area (QTPA) and the seroprevalence of T. gondii in the food-borne animals in that area has been limited. Therefore, this study focused to T. gondii and toxoplasmosis to perform an indirect ELISA test based on recombinant TgSAG2 protein to establish a comprehensive record of the seroprevalence of T. gondii infections in a wide range of animals, including Tibetan sheep (Ovis aries), yaks (Bos grunniens), cows, chicken, pigs, and horses, in the QTPA. Overall, the seropositive rates of the specific-T. gondii IgG and IgM antibodies in all investigated animals were 44.1% (1179/2673) and 18.0% (469/2612), respectively. The 14.9% (389/2612) sera were determined to be both IgG and IgM positive samples, 30.2% (789/2673) were single-IgG seropositive, and a total of 80 in 2612 animals (3.0%) were single-IgM seropositive. Moreover, for the animal species, the pig was the most prevalent animal (90.2%, 304/337) for IgG positivity, followed by Tibetan sheep (50.7%, 460/907), chickens (45.8%, 229/500), yaks (21.1%, 140/663), cows (18.5%, 38/205) and horses (13.1%, 8/61), respectively. For the IgM antibody positivity, the pig was also the most prevalent animal (41.8%, 141/337), followed by Tibetan sheep (21.2%, 191/907), cows (15.1%, 31/205), chickens (12.4%, 62/500) and yaks (6.6%, 44/663), respectively. The significant differences in the prevalent distribution of T. gondii were found in the different altitudes. In conclusion, this study found the high seroprevalence for T. gondii infections among these animal species in the QTPA, and provides new data to facilitate further research for development of control measures against T. gondii infections in the surveyed locations.
Anaplasma genus infects the blood cells of humans and animals by biting, causing zoonotic anaplasmosis. However, limited data are available on carrier animals for Anaplasma spp. antibodies in the Qinghai–Tibetan Plateau Area. Therefore, a serological indirect ELISA diagnostic method based on the major surface protein 5 (MSP5), derived from Anaplasma phagocytophilum, was developed in this study to analyze both IgG and IgM antibodies of Anaplasma spp. in a total of 3952 animals from the Qinghai–Tibetan Plateau, including yaks (Bos grunniens), cows (Bos taurus), cattle (Bos taurus domesticus), Tibetan sheep (Ovis aries), horses (Equus ferus caballus), pigs (Sus domesticus), chickens (Gallus gallus domesticus), donkeys (Equus asinus), stray dogs (Canis sp.), and stray cats (Felis sp.). The results showed that recombinant MSP5 protein was expressed and was successfully used to establish the indirect ELISA methods. The overall positivity for Anaplasma IgG and IgM antibodies was 14.6% (578/3952) and 7.9% (312/3952), respectively, and a total of 123 animals (3.1%) were both IgG- and IgM-positive. Moreover, the most prevalent Anaplasma IgG positivity was exhibited by donkeys (82.5%), followed by stray dogs, Tibetan sheep, pigs, chickens, horses, yaks, cows, cattle, and stray cats. The analysis for IgM antibody positivity revealed that IgM positivity was the most prevalent in the stray dogs (30.1%), followed by horses, yaks, Tibetan sheep, cows, stray cats, and cattle. Moreover, the results revealed significant differences (p < 0.05) at different altitudes in Anaplasma-specific IgG in the yaks, Tibetan sheep, and horses, and in IgM in the yaks and Tibetan sheep. In conclusion, this study is the first to demonstrate that yaks, cows, cattle, Tibetan sheep, horses, donkeys, stray dogs, stray cats, pigs, and chickens living in the Qinghai–Tibet Plateau are carrier animals for Anaplasma spp. IgG or IgM antibodies. The current findings provide valuable current data on the seroepidemiology of anaplasmosis in China and for plateau areas of the world.
Toxoplasmosis is a zoonotic disease caused by the obligate intracellular protozoan parasite T. gondii which is widely prevalent in humans and animals worldwide. The diagnosis of toxoplasmosis and distinguishing acute or chronic T. gondii infections have utmost importance for humans and animals. The TgSAG1, TgGRA7, and TgBAG1 proteins were used in the present study to develop the serological rSAG1-ELISA, rGRA7-ELISA and rBAG1-ELISA methods for the testing of T. gondii specific IgG and IgM antibodies and differentiating acute or chronic toxoplasmosis in 3733 animals, including Tibetan sheep, yaks, pigs, cows, cattle, horses, chickens, camels and donkeys from the Qinghai-Tibetan Plateau. The ELISA tests showed that the overall positivity of IgG antibody was 21.1% (786/3733), 15.3% (570/3733) and 18.2% (680/3733) for rSAG1-, rGRA7- and rBAG1-ELISA, respectively, and the positivity of IgM antibody was 11.8% (439/3733), 13.0% (486/3733) and 11.8% (442/3733) for rSAG1-, rGRA7- and rBAG1-ELISA, respectively. A total of 241 animals (6.5%) positive for all rSAG1-, rGRA7- and rBAG1-IgG were found in this study, and the 141 animals (3.8%) tested were anti-T. gondii IgM positive in all three ELISAs. Moreover, the 338, 284 and 377 animals were IgG positive in rSAG1 + rGRA7-, rBAG1 + rGRA7- and rSAG1 + rBAG1- ELISAs respectively, and the 346, 178 and 166 animals in rSAG1 + rGRA7-, rBAG1 + rGRA7- and rSAG1 + rBAG1-ELISAs were IgM positive respectively. The results confirmed that the application of SAG1, GRA7, and BAG1 recombinant antigens could successfully be used in the detection of specific IgG and IgM antibodies for distinguishing between acute or chronic T. gondii infections. It is inferred that the forms in which current animal species in the plateau area were infected with T. gondii, and the period of infection or the clinical manifestations of the current infections may be different. The present study provides substantial clinical evidence for the differential diagnosis of toxoplasmosis, and the classification of acute and chronic T. gondii infections.
Background Dermacentor nuttalli has been a focus of study because tick-borne pathogens have been widely identified in D. nuttalli in the northern and southwestern China. The salivary glands and midgut of ticks are specific and major barriers to efficient pathogen transmission. The spotted fever group Rickettsia causes tick-borne rickettsiosis, which poses serious threats to the health of humans and animals. Identification of the species of Rickettsia in the midgut and salivary glands of D. nuttalli is essential for understanding the colonization of the pathogens in ticks and for developing effective control strategies for Rickettsia. Methods This study collected D. nuttalli in the field on the Qinghai-Tibetan Plateau from March to April 2021 to characterize the D. nuttalli life-cycle under laboratory conditions, and identified SFG Rickettsia in the D. nuttalli midgut and salivary glands of males and females in both original and next-generational adults. Results D. nuttalli ticks collected in this area were molecularly confirmed, and exhibited one life cycle of an average of 67.4 days under laboratory conditions. The average weight of engorged females was 656.0 mg, which was 74.5 times the weight of unfed females. Moreover, high colonization rates of Rickettsia spp. were found in both the midgut and salivary glands of both male (92.0%) and female (93.0%) D. nuttalli ticks, anf no positivity being found in single tissue colonization. However, low rates of 4.0–6.0% of Rickettsia spp. colonization in the D. nuttalli midgut and salivary glands were detected. Furthermore, the sequencing analysis showed that the Rickettsia sequences obtained in this study shared 98.6 to 100% nucleotide identity to R. slovaca and R. raoultii isolated from Dermacentor spp. in China. The phylogenetic analysis of Rickettsia spp. based on the gltA, ompA, ompB and sca4 genes revealed that the Rickettsia sequences obtained could be classified into these two groups, R. slovaca and R. raoultii. Conclusions This study is the first to identify the life-cycle of collected D. nuttalli in the field in the Qinghai-Tibetan Plateau under laboratory conditions, and to detect the two species of SFG Rickettsia in the midgut and salivary glands of males and females in both original and next-generational D. nuttalli adults. Our study provides new insights into the pathogen colonization in ticks in the Qinghai-Tibet Plateau, and the relationship among hosts, ticks and pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.