A simple and rapid bacterial counting method was developed based on dark-field light-scattering imaging of bacteria and gold nanoparticle (AuNP) reporter simultaneously. Commercially available DH5α E. coli strain was used as the model bacterium to demonstrate the feasibility of the proposed method. With antibody-conjugated AuNPs, the simple sample treatment and target E. coli strain recognition can be finished within 15-30 min, with a detection limit of 2-6 × 10(4) colony forming unit per milliliter (CFU/mL). By using 90 nm AuNPs as the light-scattering signal reporter, the bacterial recognition and counting can be easily performed with low-cost instrumentation such as an entry-level dark-field microscope setup and a common tungsten lamp as the light source. An automatic image analysis algorithm was also developed to facilitate robust and fast bacterial counting. The preliminary results of water, milk, and fruit juice sample analysis showed that this simple, fast, and cost-effective method can be easily adopted for routine bacterial detection.
a b s t r a c t H-REV107-like family proteins TIG3 and H-REV107 are class II tumor suppressors. Here we report that the C-terminal domains (CTDs) of TIG3 and H-REV107 can induce HeLa cell death independently. The N-terminal domain (NTD) of TIG3 enhances the cell death inducing ability of CTD, while NTD of H-REV107 plays an inhibitory role. The solution structure of TIG3 NTD is very similar to that of H-REV107 in overall fold. However, the CTD binding regions on NTD are different between TIG3 and H-REV107, which may explain their functional difference. As a result, the flexible main loop of H-REV107, but not that of TIG3, is critical for its NTD to modulate its CTD in inducing cell death.
In this study, we developed a highly sensitive automatic counting method for gold nanomaterials at the single particle level, which can serve as a general sensing platform based on counting of gold nanomaterials. This method substantially improved the sensitivity and accuracy for AuNP counting by adopting the color image processing based on the distinctive localized plasmonic light-scattering of gold nanomaterials. The 60-nm AuNPs, with concentrations down to 4 fM, can be detected with our method. As a universal counting approach for gold nanomaterials, such as gold nanospheres, nanorods, and aggregates from particles under detectable size, this quantification method should be versatile to a breadth of applications.
Effective signal enhancement for fluorescence anisotropy in a simple manner is most desirable for fluorescence anisotropy method development. This work aimed to provide insights into the fluorescence anisotropy of terminally labeled double-stranded DNA (dsDNA) to facilitate a facile and universal design strategy for DNA recognition based applications. We demonstrated that fluorescence anisotropy of dsDNA could be regulated by the nature of dyes, the molecular volume, and the end structure of dsDNA. Fluorescence anisotropy ascended with the increased number of base pairs up to 18 bp and leveled off thereafter, indicating the molecular volume was not the only factor responsible for fluorescence anisotropy. By choosing dyes with the positively charged center, high fluorescence anisotropy signal was obtained due to the confinement of the segmental motion of dyes through the electrostatic interaction. By properly designing the end structure of dsDNA, fluorescence anisotropy could be further improved by enlarging the effective overall rotational volume, as supported by two-dimensional (2D) (1)H-(1)H nuclear Overhauser enhancement spectroscopy (NOESY). With the successful enhancement of the fluorescence anisotropy for terminally labeled dsDNA, simple and universal designs were demonstrated by sensing of major classes of analytes from macromolecules (DNA and protein) to small molecules (cocaine).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.