Urban pollution caused by road particles is widely criticized. The complex and changeable internal flow field of the dust suction port has the greatest influence of the dust suction operation effect. The aim of this paper is to explore the influence law of various influencing factors on the flow field characteristics of the sweeper’s dust suction port, and reveal its influence mechanism on the dust suction efficiency of the dust suction port. The results of the study show that: increasing the width and outlet diameter will change the flow field characteristics, and the dust suction efficiency will change accordingly, 500 mm and 280 mm are the best width and outlet diameter respectively. The increase of driving speed will increase the relative speed between the inlet surface and dust particles, causing dust particles to spill. The increase of negative pressure at the outlet will increase the flow field characteristics, but the dust suction efficiency will stop when it increases to a certain value. A new dust suction port structure is proposed to further improve the dust suction efficiency. This study can provide a reference for the design of the dust suction port.
Purely electric sweepers are widely used in the urban sanitation industry due to their emission-free nature and ease of miniaturisation. The dust suction port is the key to the dust suction system of the sweeper, and improving the design level of the dust suction port of the sweeper can effectively improve the operational performance of the sweeper. Using the company’s self-developed Ruiqing S26 pure electric sweeper as the research object, a CFD (Computational Fluid Dynamics) method was used to analyse the influence of the dust suction port structure parameters (front baffle tilt angle, outlet diameter) and sweeper operation parameters (driving speed, operating pressure) on the dust suction effect of the sweeper, and was verified through real vehicle tests. The results of the study show that changing the angle and outlet diameter results in a change in the flow field characteristics and, consequently, the same change in the removal efficiency, with 65° and 160 mm being the optimum angle and outlet diameter, respectively. The tests investigated the flow field characteristics of the dust extraction opening and the removal efficiency. This study can provide theoretical reference for performance optimisation and parameter matching of the sweeper.
Abstract. Optimizing the structure of the suction port is the key to effectively improving the performance of the sweeping vehicle. The CFD (computational fluid dynamics) method and gas–solid two-phase flow model are used to analyse the influence rule of the structural parameters and the height above ground on the cleaning effect, which is verified by real vehicle tests. The data set was established by an orthogonal test method, and a BP (backpropagation) neural network was used to fit the structural parameters and evaluation indexes. The fitting errors were all within 5 %, indicating that the fitting results of this method were good. According to the fitting relation of the BP neural network output, the whale algorithm should be further used to solve the optimal structural parameters. The results show that the optimal parameter combination is β=63∘, d=168 mm and h=12 mm. The energy consumption of the optimized model is reduced, and the internal airflow loss is reduced. The particle residence time becomes shorter, and the particle can flow out from the outlet faster, thus improving the dust absorption effect. The research can provide a theoretical reference for performance optimization and parameter matching of sweepers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.