Cells of rough (but not smooth) strains of Salmonella typhimurium become competent for transfection by phage P22 deoxyribonucleic acid after treatment with 0.1 M CaCl2. The yield of infectious centers is about 10(-8) per genome equivalent of deoxyribonucleic acid. However, different sorts of rough strains vary in their ability to become competent in a fashion that can be correlated with the level of the genetic block in cell wall lipopolysaccharide synthesis. The most amenable strains are blocked by defects in the addition of galactose units I and II of the lipopolysaccharide by the inability to synthesize uridine 5'-diphosphate-galactose (galE point mutants and gal deletion mutants). Strains blocked only in the addition of galactose I, glucose I, or heptose II have low levels of transfectability, whereas strains with either more complete or more deficient lipopolysaccharide core are not competent for transfection. When normal lipopolysaccharide synthesis is restored either genetically or by furnishing exogenous galactose (galE point mutants that can still use it), the cells are not longer competent for transfection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.