Monitoring the nutritional quality of dietetic milk throughout its shelf life is particularly important due to the high susceptibility of some vitamins to oxidation, and the continuous development of the Maillard reaction during storage. The objective of this paper was to evaluate the vitamin C content and protein modification by denaturation and glycation on fortified milk samples (growth milks) destined for 1- to 3-yr-old children. The influences of the sterilization process, formulation, packaging, and storage duration at ambient temperature in the dark were studied. Vitamin C degradation was particularly influenced by type of packaging. The use of a 3-layered opaque bottle was associated with complete oxidation of vitamin C after 1 mo of storage, whereas in the 6-layered opaque bottle, which has an oxygen barrier, the vitamin C content slowly decreased to reach 25% of the initial concentration after 4 mo of storage. However, no significant effect of vitamin C degradation during storage could be observed in terms of Maillard reaction, despite the fact that a probable impact occurred during sterilization. Furosine content and the FAST (fluorescence of advanced Maillard products and soluble tryptophan) index-indicators of the early and advanced Maillard reaction, respectively-were significantly higher in the in-bottle sterilized milk samples compared with UHT samples, and in fortified milk samples compared with cow milk. However, after 1 mo, the impact of storage was predominant, increasing the furosine level and the FAST index at similar levels for the differently processed samples. The early Maillard reaction developed continuously throughout the storage period.In conclusion, only packaging comprising an oxygen and light barrier is compatible with vitamin C fortification of milk. Furthermore, short storage time or low storage temperature is needed to retard vitamin C degradation, protein denaturation, and development of the Maillard reaction.
The thermal, rheological, and structural behaviors of a spreadable processed cheese were studied by complementary techniques including differential scanning calorimetry (DSC), rheology, and X-ray diffraction as a function of temperature. In this product, fat is present as a dispersed phase. Thermal and rheological properties were studied at different cooling rates between 0.5 and 10 degrees C min(-1) from 60 to 3 degrees C. Crystallization properties of fat were monitored at a cooling rate of -2 degrees C min(-1) from 60 to -10 degrees C. Fat triacylglycerols (TGs) crystallized at 15 degrees C in a triple-chain length 3Lalpha (72 A) structure correlated to exothermic events and to the sudden increase in the rheological moduli G' and G''. Upon heating at 2 degrees C min(-1), the polymorphic transition of TGs evidence the melting of the 3Lalpha structure and the formation of a 2Lbeta' (36.7-41.5 A) structure. Melting of the latter follows. These transformations coincide with thermal events observed by DSC and the decrease in two steps of the rheological moduli. The influence of fat crystallization, melting, and polymorphism upon the viscoelastic properties is clearly demonstrated upon both heating and cooling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.