In this work, we investigated the effect of codon bias and consensus sequence (CACA) at the translation initiation site on the expression level of heterologous proteins in Yarrowia lipolytica; human interferon alpha 2b (hIFN-α2b) was studied as an example. A codon optimized hIFN-α2b gene was synthesized according to the frequency of codon usage in Y. lipolytica. Both wild-type (IFN-wt) and optimized hIFN-α2b (IFN-op) genes were expressed under the control of a strong inducible promoter acyl-co-enzyme A oxidase (POX2). Protein secretion was directed by the targeting sequence of the extracellular lipase (LIP2): pre-proLIP2. Codon optimization increased protein production by 11-fold, whereas the insertion of CACA sequence upstream of the initiation codon of IFN-op construct resulted in 16.5-fold increase of the expression level; this indicates that translational efficiency plays an important part in the increase of hIFN-α2b production level. The replacement of the pre-proLIP2 signal secretion with the LIP2 pre-region sequence followed by the X-Ala/X-Pro stretch but without the pro-region also increased the secretion of the target protein by twofold, suggesting therefore that the LIP2 pro-region is not necessary for extracellular secretion of small heterologous proteins in Yarrowia lipolytica.
Efforts to make vaccines against infectious diseases and immunotherapies for cancer have evolved to utilize a variety of heterologous expression systems such as viral vectors. These vectors are often attenuated or engineered to safely deliver genes encoding antigens of different pathogens. Adenovirus and poxvirus vectors are among the viral vectors that are most frequently used to develop prophylactic vaccines against infectious diseases as well as therapeutic cancer vaccines. This mini-review describes the trends and processes in large-scale production of adenovirus and poxvirus vectors to meet the needs of clinical applications. We briefly describe the general principles for the production and purification of adenovirus and poxvirus viral vectors. Currently, adenovirus and poxvirus vector manufacturing methods rely on well-established cell culture technologies. Several improvements have been evaluated to increase the yield and to reduce the overall manufacturing cost, such as cultivation at high cell densities and continuous downstream processing. Additionally, advancements in vector characterization will greatly facilitate the development of novel vectored vaccine candidates.
Manganese (Mn) is an essential trace element required for ubiquitous enzymatic reactions. Chronic overexposure to this metal may promote potent neurotoxic effects. The mechanism of Mn toxicity is not well established, but several studies indicate that oxidative stress play major roles in the Mn-induced neurodegenerative processes. Silymarin (SIL) has antioxidant properties and stabilizes intracellular antioxidant defense systems. The aim of this study was to evaluate the toxic effects of MnCl2 on the mouse neuroblastoma cell lines (Neuro-2A), to characterize the toxic mechanism associated with Mn exposure and to investigate whether SIL could efficiently protect against neurotoxicity induced by Mn. A significant increase in LDH release activity was observed in Neuro-2A cells associated with a significant decrease in cellular viability upon 24 h exposure to MnCl2 at concentrations of 200 and 800 μM (P < 0.05) when compared with control unexposed cells. In addition, exposure cells to MnCl2 (200 and 800 μM), increases oxidant biomarkers and alters enzymatic and non enzymatic antioxidant systems. SIL treatment significantly reduced the levels of LDH, nitric oxide, reactive oxygen species and the oxidants/antioxidants balance in Neuro-2A cells as compared to Mn-exposed cells. These results suggested that silymarin is a powerful antioxidant through a mechanism related to its antioxidant activity, able to interfere with radical-mediated cell death. SIL may be useful in diseases known to be aggravated by reactive oxygen species and in the development of novel treatments for neurodegenerative disorders such as Alzheimer or Parkinson diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.