The existing automatic fingerprint verification methods are designed to work under the assumption that the same sensor is installed for enrollment and authentication (regular matching). There is a remarkable decrease in efficiency when one type of contact-based sensor is employed for enrolment and another type of contact-based sensor is used for authentication (cross-matching or fingerprint sensor interoperability problem,). The ridge orientation patterns in a fingerprint are invariant to sensor type. Based on this observation, we propose a robust fingerprint descriptor called the co-occurrence of ridge orientations (Co-Ror), which encodes the spatial distribution of ridge orientations. Employing this descriptor, we introduce an efficient automatic fingerprint verification method for cross-matching problem. Further, to enhance the robustness of the method, we incorporate scale based ridge orientation information through Gabor-HoG descriptor. The two descriptors are fused with canonical correlation analysis (CCA), and the matching score between two fingerprints is calculated using city-block distance. The proposed method is alignment-free and can handle the matching process without the need for a registration step. The intensive experiments on two benchmark databases (FingerPass and MOLF) show the effectiveness of the method and reveal its significant enhancement over the state-of-the-art methods such as VeriFinger (a commercial SDK), minutia cylindercode (MCC), MCC with scale, and the thin-plate spline (TPS) model. The proposed research will help security agencies, service providers and law-enforcement departments to overcome the interoperability problem of contact sensors of different technology and interaction types.INDEX TERMS biometrics; fingerprint sensor interoperability; cross-sensor fingerprint matching; fingerprint verification; feature-level fusion
The fingerprint is a commonly used biometric modality that is widely employed for authentication by law enforcement agencies and commercial applications. The designs of existing fingerprint matching methods are based on the hypothesis that the same sensor is used to capture fingerprints during enrollment and verification. Advances in fingerprint sensor technology have raised the question about the usability of current methods when different sensors are employed for enrollment and verification; this is a fingerprint sensor interoperability problem. To provide insight into this problem and assess the status of state-of-the-art matching methods to tackle this problem, we first analyze the characteristics of fingerprints captured with different sensors, which makes cross-sensor matching a challenging problem. We demonstrate the importance of fingerprint enhancement methods for cross-sensor matching. Finally, we conduct a comparative study of state-of-the-art fingerprint recognition methods and provide insight into their abilities to address this problem. We performed experiments using a public database (FingerPass) that contains nine datasets captured with different sensors. We analyzed the effects of different sensors and found that cross-sensor matching performance deteriorates when different sensors are used for enrollment and verification. In view of our analysis, we propose future research directions for this problem.
The fingerprint is one of the leading biometric modalities that is used worldwide for authenticating the identity of persons. Over time, a lot of research has been conducted to develop automatic fingerprint verification techniques. However, due to different authentication needs, the use of different sensors and the fingerprint verification systems encounter cross-sensor matching or sensor interoperability challenges, where different sensors are used for the enrollment and query phases. The challenge is to develop an efficient, robust and automatic system for cross-sensor matching. This paper proposes a new cross-matching system (SiameseFinger) using the Siamese network that takes the features extracted using the Gabor-HoG descriptor. The proposed Siamese network is trained using adversarial learning. The SiameseFinger was evaluated on two benchmark public datasets FingerPass and MOLF. The results of the experiments presented in this paper indicate that SiameseFinger achieves a comparable performance with that of the state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.