Recebido em 27/7/10; aceito em 11/11/10; publicado na web em 18/2/11Two food products (powders) were obtained by hot-air drying or lyophilisation methods on the whole guava fruits. The powders were characterised by sensory and thermal analyses (TGA-DSC), infrared spectroscopy (IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Thermal, morphological and structural characterisations showed a similar behaviour for the two solids. TGA-DSC and IR showed the presence of pectin as the main constituent of solids. A semi-crystalline profile was evidenced by XRD, and lamellar/spherical morphologies were observed by SEM. Sensory analyses revealed an aroma highly related to guava. These value-added food products are an alternative to process guava and avoid loss during postharvest handling.
To develop proposals in bacterial formulations applicable to the agricultural sector, a study of physicochemical and biological parameters of the polymeric materials is essential. Here, we evaluated the effects of eight polymers on the cellular viability of Rhizobium sp. G58 during a 2-month period. From these results, we selected the three polymers that yielded the best results in respect to the survival of the bacteria. An assay of the effect of the polymers on the symbiotic activity of Rhizobium-Cowpea and the agronomic parameters was conducted under greenhouse conditions, based on the principal component analysis. A positive effect was found in Rhizobium sp. G58 using the Tukey's Test (p<0.05) with sodium alginate (0.5-1%) and hydroxypropyl methylcellulose-HPMC (0.125-0.5%), while a significant decrease was established in cellular viability using polyethylene glycol-PEG, carbomer-Carbopol 940, and polyvinyl alcohol-PVA. The multivariate analysis indicated that the application of the polymers (sodium alginate and hydroxypropyl methylcellulose) in 0.5% concentration did not have negative effects on the symbiotic fixation of nitrogen or the process of nodulation. In conclusion, our results suggest the effectiveness of these polymers and the possibility of using them as carriers of bacterial formulation without affecting physiological processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.