Epilepsy is a brain abnormality that leads its patients to suffer from seizures, which conditions their behavior and lifestyle. Neurologists use an electroencephalogram (EEG) to diagnose this disease. This test illustrates the signaling behavior of a person's brain, allowing, among other things, the diagnosis of epilepsy. From a visual analysis of these signals, neurologists identify patterns such as peaks or valleys, looking for any indication of brain disorder that leads to the diagnosis of epilepsy in a purely qualitative way. However, by applying a test based on Fourier signal analysis through rapid transformation in the frequency domain, patterns can be quantitatively identified to differentiate patients diagnosed with the disease and others who are not. In this article, an analysis of the EEG signal is performed to extract characteristics in patients already classified as epileptic and non-epileptic, which will be used in the training of models based on classification techniques such as logistic regression, artificial neural networks, support vector machines, and convolutional neural networks. Based on the results obtained with each technique, an analysis is performed to decide which of these behaves better.
In this study traditional classification techniques were implemented that had as data frequency data in the channels with distinctive information of EEG examinations, this was done through a feature extraction obtained with Fourier analysis considering frequency bands. The techniques used for classification were implemented in Python and through a comparison of metrics and performance, it was concluded that the best classification technique to characterize epileptic patients are artificial neural networks with an accuracy of 86%.
This paper proposes a methodology for the design of fuzzy inference systems based on Boolean relations. The approach using Boolean sets presents limited performance due to the abrupt transitions that occur during its functioning, therefore, fuzzy sets can be used aiming the improvement of the performance. In this approach, firstly, the design of a Boolean controller is performed, which is later extended into fuzzy under design guidelines proposed in this paper. The methodology uses Kleene algebra via truth tables for the fuzzy system design, allowing the simplification of the equations that implement the fuzzy system.
The objective of this article is to review how Artificial Intelligence (AI) tools have helped the process of formulating agricultural public policies in the world. For this, a search process was carried out in the main scientific repositories finding different publications. The findings have shown that, first, the most commonly used AI tools are agent-based models, cellular automata, and genetic algorithms. Secondly, they have been utilized to determine land and water use, and agricultural production. In the end, the large usefulness that AI tools have in the process of formulating agricultural public policies is concluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.