Canadian Institutes of Health Research, Heart and Stroke Foundation of Canada, Ontario Ministry of Health and Long-Term Care, Ontario Ministry of Research, Innovation and Science, UK National Institute of Academic Anaesthesia, UK Clinical Research Collaboration, Australian and New Zealand College of Anaesthetists, and Monash University.
IMPORTANCEIn patients who require mechanical ventilation for acute hypoxemic respiratory failure, further reduction in tidal volumes, compared with conventional low tidal volume ventilation, may improve outcomes. OBJECTIVE To determine whether lower tidal volume mechanical ventilation using extracorporeal carbon dioxide removal improves outcomes in patients with acute hypoxemic respiratory failure. DESIGN, SETTING, AND PARTICIPANTS This multicenter, randomized, allocation-concealed, open-label, pragmatic clinical trial enrolled 412 adult patients receiving mechanical ventilation for acute hypoxemic respiratory failure, of a planned sample size of 1120, between May 2016 and December 2019 from 51 intensive care units in the UK. Follow-up ended on March 11, 2020. INTERVENTIONS Participants were randomized to receive lower tidal volume ventilation facilitated by extracorporeal carbon dioxide removal for at least 48 hours (n = 202) or standard care with conventional low tidal volume ventilation (n = 210). MAIN OUTCOMES AND MEASURESThe primary outcome was all-cause mortality 90 days after randomization. Prespecified secondary outcomes included ventilator-free days at day 28 and adverse event rates. RESULTS Among 412 patients who were randomized (mean age, 59 years; 143 [35%] women), 405 (98%) completed the trial. The trial was stopped early because of futility and feasibility following recommendations from the data monitoring and ethics committee. The 90-day mortality rate was 41.5% in the lower tidal volume ventilation with extracorporeal carbon dioxide removal group vs 39.5% in the standard care group (risk ratio, 1.05 [95% CI, 0.83-1.33]; difference, 2.0% [95% CI, −7.6% to 11.5%]; P = .68). There were significantly fewer mean ventilator-free days in the extracorporeal carbon dioxide removal group compared with the standard care group (7.1 [95% CI, 5.9-8.3] vs 9.2 [95% CI, 7.9-10.4] days; mean difference, −2.1 [95% CI, −3.8 to −0.3]; P = .02). Serious adverse events were reported for 62 patients (31%) in the extracorporeal carbon dioxide removal group and 18 (9%) in the standard care group, including intracranial hemorrhage in 9 patients (4.5%) vs 0 (0%) and bleeding at other sites in 6 (3.0%) vs 1 (0.5%) in the extracorporeal carbon dioxide removal group vs the control group. Overall, 21 patients experienced 22 serious adverse events related to the study device.CONCLUSIONS AND RELEVANCE Among patients with acute hypoxemic respiratory failure, the use of extracorporeal carbon dioxide removal to facilitate lower tidal volume mechanical ventilation, compared with conventional low tidal volume mechanical ventilation, did not significantly reduce 90-day mortality. However, due to early termination, the study may have been underpowered to detect a clinically important difference.
To study the efficacy of lopinavir-ritonavir and hydroxychloroquine in critically ill patients with coronavirus disease 2019 .Methods: Critically ill adults with COVID-19 were randomized to receive lopinavir-ritonavir, hydroxychloroquine, combination therapy of lopinavir-ritonavir and hydroxychloroquine or no antiviral therapy (control). The primary endpoint was an ordinal scale of organ support-free days. Analyses used a Bayesian cumulative logistic model and expressed treatment effects as an adjusted odds ratio (OR) where an OR > 1 is favorable. Results:We randomized 694 patients to receive lopinavir-ritonavir (n = 255), hydroxychloroquine (n = 50), combination therapy (n = 27) or control (n = 362). The median organ support-free days among patients in lopinavir-ritonavir, hydroxychloroquine, and combination therapy groups was 4 (-1 to 15), 0 (-1 to 9) and-1 (-1 to 7), respectively,
Background: The Duke Activity Status Index (DASI) questionnaire might help incorporate self-reported functional capacity into preoperative risk assessment. Nonetheless, prognostically important thresholds in DASI scores remain unclear. We conducted a nested cohort analysis of the Measurement of Exercise Tolerance before Surgery (METS) study to characterise the association of preoperative DASI scores with postoperative death or complications. Methods: The analysis included 1546 participants (!40 yr of age) at an elevated cardiac risk who had inpatient noncardiac surgery. The primary outcome was 30-day death or myocardial injury. The secondary outcomes were 30-day death or myocardial infarction, in-hospital moderate-to-severe complications, and 1 yr death or new disability. Multivariable logistic regression modelling was used to characterise the adjusted association of preoperative DASI scores with outcomes. Results: The DASI score had non-linear associations with outcomes. Self-reported functional capacity better than a DASI score of 34 was associated with reduced odds of 30-day death or myocardial injury (odds ratio: 0.97 per 1 point increase above 34; 95% confidence interval [CI]: 0.96e0.99) and 1 yr death or new disability (odds ratio: 0.96 per 1 point increase above 34; 95% CI: 0.92e0.99). Self-reported functional capacity worse than a DASI score of 34 was associated with increased odds of 30-day death or myocardial infarction (odds ratio: 1.05 per 1 point decrease below 34; 95% CI: 1.00e1.09), and moderate-to-severe complications (odds ratio: 1.03 per 1 point decrease below 34; 95% CI: 1.01e1.05). Conclusions: A DASI score of 34 represents a threshold for identifying patients at risk for myocardial injury, myocardial infarction, moderate-to-severe complications, and new disability.
Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.