We measured plasma‐derived extracellular vesicle (EV) proteins and their microRNA (miRNA) cargos in normoglycemic (NG), glucose intolerant (GI), and newly diagnosed diabetes mellitus (DM) in middle‐aged male participants of the Brazilian Longitudinal Study of Adult Health (ELSA‐Brazil). Mass spectrometry revealed decreased IGHG‐1 and increased ITIH2 protein levels in the GI group compared with that in the NG group and higher serotransferrin in EVs in the DM group than in those in the NG and GI groups. The GI group also showed increased serum ferritin levels, as evaluated by biochemical analysis, compared with those in both groups. Seventeen miRNAs were differentially expressed (DEMiRs) in the plasma EVs of the three groups. DM patients showed upregulation of miR‐141‐3p and downregulation of miR‐324‐5p and ‐376c‐3p compared with the NG and GI groups. The DM and GI groups showed increased miR‐26b‐5p expression compared with that in the NG group. The DM group showed decreased miR‐374b‐5p levels compared with those in the GI group and higher concentrations than those in the NG group. Thus, three EV proteins and five DEMiR cargos have potential prognostic importance for diabetic complications mainly associated with the immune function and iron status of GI and DM patients.
Sepsis results from a dyshomeostatic response to infection, which may lead to hyper or hypoimmune states. Monocytes are central regulators of the inflammatory response, but our understanding of their role in the genesis and resolution of sepsis is still limited. Here, we report a comprehensive exploration of monocyte molecular responses in a cohort of patients with septic shock via proteomic profiling. The acute stage of septic shock was associated with an impaired inflammatory phenotype, indicated by the down-regulation of MHC class II molecules and proinflammatory cytokine pathways. Simultaneously, there was an up-regulation of glycolysis enzymes and a decrease in proteins related to the citric acid cycle and oxidative phosphorylation. On the other hand, the restoration of immunocompetence was the hallmark of recovering patients, in which an upregulation of interferon signaling pathways was a notable feature. Our results provide insights into the immunopathology of sepsis and propose that, pending future studies, immunometabolism pathway components could serve as therapeutic targets in septic patients.
In the course of infection and intense endotoxemia processes, induction of a catabolic state leading to weight loss is observed in mice and humans. However, the late effects of acute inflammation on energy homeostasis, regulation of body weight and glucose metabolism are yet to be elucidated. Here, we addressed whether serial intense endotoxemia, characterized by an acute phase response and weight loss, could be an aggravating or predisposing factor to weight gain and associated metabolic complications. Male Swiss Webster mice were submitted to 8 consecutive doses of lipopolysaccharide (10 mg/kg LPS), followed by 10 weeks on a high-fat diet (HFD). LPS-treated mice did not show changes in weight when fed standard chow. However, when challenged by a high-fat diet, LPS-treated mice showed greater weight gain, with larger fat depot areas, increased serum leptin and insulin levels and impaired insulin sensitivity when compared to mice on HFD only. Acute endotoxemia caused a long-lasting increase in mRNA expression of inflammatory markers such as TLR-4, CD14 and serum amyloid A (SAA) in the adipose tissue, which may represent the key factors connecting inflammation to increased susceptibility to weight gain and impaired glucose homeostasis. In an independent experimental model, and using publicly available microarray data from adipose tissue from mice infected with Gram-negative bacteria, we performed gene set enrichment analysis and confirmed upregulation of a set of genes responsible for cell proliferation and inflammation, including TLR-4 and SAA. Together, we showed that conditions leading to intense and recurring endotoxemia, such as common childhood bacterial infections, may resound for a long time and aggravate the effects of a western diet. If confirmed in humans, infections should be considered an additional factor contributing to obesity and type 2 diabetes epidemics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.