Aims/hypothesis Pre-adipocytes and adipocytes are responsive to the acute phase protein serum amyloid A (SAA). The combined effects triggered by SAA encompass an increase in preadipocyte proliferation, an induction of TNF-α and IL-6 release and a decrease in glucose uptake in mature adipocytes, strongly supporting a role for SAA in obesity and related comorbidities. This study addressed whether SAA depletion modulates weight gain and insulin resistance induced by a high-fat diet (HFD). Methods Male Swiss Webster mice were fed an HFD for 10 weeks under an SAA-targeted antisense oligonucleotide (ASO SAA ) treatment in order to evaluate the role of SAA in weight gain. Results With ASO SAA treatment, mice receiving an HFD did not differ in energy intake when compared with their controls, but were prevented from gaining weight and developing insulin resistance. The phenotype was characterised by a lack of adipose tissue expansion, with low accumulation of epididymal, retroperitoneal and subcutaneous fat content and decreased inflammatory markers, such as SAA3 and toll-like receptor (TLR)-4 expression, as well as macrophage infiltration into the adipose tissue. Furthermore, a metabolic status similar to chow-fed mice counterparts could be observed, with equivalent levels of leptin, adiponectin, IGF-I, SAA, fasting glucose and insulin, and remarkable improvement in glucose and insulin tolerance test profiles. Surprisingly, the expected HFD-induced metabolic endotoxaemia was also prevented by the ASO SAA treatment.
Conclusions/interpretationThis study provides further evidence of the role of SAA in weight gain and insulin resistance. Moreover, we also suggest that beyond its proliferative and inflammatory effects, SAA is part of the lipopolysaccharide signalling pathway that links inflammation to obesity and insulin resistance.
GQ-11 is a partial/dual PPARα/γ agonist that demonstrates anti-diabetic effects. Additionally, it improves the lipid profile and ameliorates chronic inflammation associated with obesity in atherosclerosis-prone mice.
Insulin-like growth factor (IGF)-1 plays important role in tissue repair through its ability to stimulate wound cell activity. While IGF-1 is expressed locally by wound cells, liver-derived IGF-1 is also present at high levels in the circulation, and the contributions of local vs circulating IGF-1 to wound levels remain undefined. The hypothesis of this study was that liver is a primary source of IGF-1 during skin wound healing. To test this hypothesis, we utilized a model that allows inducible ablation of IGF-1 specifically in liver of adult mice. We demonstrate that ablation of liver IGF-1 leads to >85% loss of circulating IGF-1 and ~60% decrease in wound IGF-1 during the proliferative phase of healing in both male and female mice. This reduction of liver-derived IGF-1 did not alter local mRNA expression of Igf1 in wounds. Knockdown of liver IGF-1 significantly delayed wound re-epithelialization and reduced granulation tissue formation and collagen deposition. Knockdown of liver IGF-1 also significantly reduced angiogenesis and resulted in persistent macrophage accumulation. In summary, liver is a primary source of IGF-1 in skin wounds and contributes to many aspects of both epithelial and dermal healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.