A B S T R A C TTraffic noise affects greatly health and well-being of people, consequently the knowledge and control of the factors affecting it is very important. In this study models to predict tyre-pavement noise acoustic and psychoacoustic indicators based on type of pavement, texture, pavement distresses and speed were developed and used to assess the importance of each factor. By applying data mining techniques, in particular artificial neural networks and support vector machines, models with good predictive capacity of both acoustic and psychoacoustic noise indicators were obtained, constituting a precious tool to reduce the tyre-pavement noise. Moreover, the proposed models allowed for the assessment of the influence of the input parameters controlling noise such as: type of pavement, texture, speed and pavement distresses for the first time. It was found that pavement distresses and, as expected, speed influence strongly tyre-pavement noise. In this way it is clearly shown that preventive maintenance of road pavements by authorities, which eliminates distresses, can have an important effect on tyre-road noise, promoting the well-being of the populations.
Microtopographic and rugometric characterization of surfaces is routinely and effectively performed non-invasively by a number of different optical methods. Rough surfaces are also inspected using optical profilometers and microtopographer. The characterization of road asphalt pavement surfaces produced in different ways and compositions is fundamental for economical and safety reasons. Having complex structures, including topographically with different ranges of form error and roughness, the inspection of asphalt pavement surfaces is difficult to perform non-invasively. In this communication we will report on the optical non-contact rugometric characterization of the surface of different types of road pavements performed at the Microtopography
Road paving recycling has been acquiring more relevance in society, especially within the paradigm of a circular economy. The addition of waste materials in asphalt mixtures is an excellent solution to face the gradual emergence of a great diversity of waste materials and reduce the production costs. This study aims to evaluate the addition of commercial and laboratory-produced polymer modified binders as rejuvenators in recycled asphalt mixtures with high contents of reclaimed asphalt pavement material (RAP). A commercial polymer modified binder (PMB) and a conventional bitumen modified with 5% of styrene-butadiene-styrene (SBS) or 4% of Regefalt were added to RAP aged bitumen and compared with a rejuvenated binder. Fatigue, permanent deformation and water sensitivity tests carried out on recycled mixtures produced with those binders showed that polymer modified binders could be used as rejuvenators to improve their performance significantly. The recycled asphalt mixture produced with the commercial PMB presented the best mechanical performance. The polymer-modified binders revealed an ageing resistance equivalent to that of the control rejuvenated binder, or slightly better in the case of the final binder with SBS polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.