Cholera toxin (CT) is an AB 5 toxin that moves from the cell surface to the endoplasmic reticulum (ER) by retrograde vesicular transport. In the ER, the catalytic A1 subunit dissociates from the rest of the toxin and enters the cytosol by exploiting the quality control system of ER-associated degradation (ERAD). The driving force for CTA1 dislocation into the cytosol is unknown. Here, we demonstrate that the cytosolic chaperone Hsp90 is required for CTA1 passage into the cytosol. Hsp90 bound to CTA1 in an ATP-dependent manner that was blocked by geldanamycin (GA), an established Hsp90 inhibitor. CT activity against cultured cells and ileal loops was also blocked by GA, as was the ER-to-cytosol export of CTA1. Experiments using RNA interference or N-ethylcarboxamidoadenosine, a drug that inhibits ER-localized GRP94 but not cytosolic Hsp90, confirmed that the inhibitory effects of GA resulted specifically from the loss of Hsp90 activity. This work establishes a functional role for Hsp90 in the ERAD-mediated dislocation of CTA1. Cholera toxin (CT)4 is one of the main virulence factors produced by Vibrio cholerae (1, 2). It is an AB-type protein toxin that contains separate catalytic and cell-binding subunits. The catalytic A subunit is initially synthesized as a 27 kDa protein, which undergoes proteolytic nicking to generate a disulfidelinked CTA1/CTA2 heterodimer. The ADP-ribosyltransferase activity of CT resides in the 22 kDa CTA1 polypeptide, while the 5 kDa CTA2 polypeptide maintains numerous non-covalent interactions with the B subunit and thereby links the enzymatic A1 moiety to the cell-binding B moiety. The CTB subunit, built from 11 kDa monomers, is a homopentameric ring-like structure that binds to GM1 gangliosides on the plasma membrane of a target cell.CT travels as an intact holotoxin from the cell surface to the ER (3). Environmental conditions in the ER facilitate reduction of the CTA1/CTA2 disulfide bond and dissociation of CTA1 from CTA2/CTB 5 . This process occurs at the resident redox state of the ER and involves the action of protein-disulfide isomerase (PDI), an ER-localized oxidoreductase (4 -8). Unfolding of the dissociated CTA1 subunit allows it to move into the cytosol through one or more protein-conducting channels in the ER membrane (9 -11). Cytosolic CTA1 then refolds into an active conformation and modifies its Gs␣ target.ER-associated degradation (ERAD), a host quality control mechanism, is responsible for the ER-to-cytosol dislocation of CTA1 (12)(13)(14). A variety of ER-localized chaperones, lectins, and oxidoreductases function in ERAD (15-17). These proteins recognize features that are present in misfolded proteins such as surface-exposed hydrophobic residues or improper patterns of N-linked glycosylation. When a misfolded protein is identified by the ERAD system, it is exported to the cytosol through Sec61 and/or Derlin-1 protein-conducting channels. Dislocated ERAD substrates are usually appended with polyubiquitin chains that serve as a molecular tag for degradation by the 26 S...
Background:The unfolded A1 subunit of cholera toxin (CT) enters the host cytosol by passing through a pore in the endoplasmic reticulum (ER) membrane. Results: ATP-dependent refolding of CTA1 by Hsp90 is sufficient for toxin export to the cytosol. Conclusion: Hsp90 couples CTA1 refolding with CTA1 extraction from the ER. Significance: This work provides a molecular basis for toxin translocation into the host cytosol.
To generate a cytopathic effect, the catalytic A1 subunit of cholera toxin (CT) must be separated from the rest of the toxin. Protein disulfide isomerase (PDI) is thought to mediate CT disassembly by acting as a redox-driven chaperone that actively unfolds the CTA1 subunit. Here, we show that PDI itself unfolds upon contact with CTA1. The substrate-induced unfolding of PDI provides a novel molecular mechanism for holotoxin disassembly: we postulate the expanded hydrodynamic radius of unfolded PDI acts as a wedge to dislodge reduced CTA1 from its holotoxin. The oxidoreductase activity of PDI was not required for CT disassembly, but CTA1 displacement did not occur when PDI was locked in a folded conformation or when its substrate-induced unfolding was blocked due to the loss of chaperone function. Two other oxidoreductases (ERp57 and ERp72) did not unfold in the presence of CTA1 and did not displace reduced CTA1 from its holotoxin. Our data establish a new functional property of PDI that may be linked to its role as a chaperone that prevents protein aggregation.
Cholera toxin (CT) is an AB-type protein toxin that contains a catalytic A1 subunit, an A2 linker, and a cell-binding B homopentamer. The CT holotoxin is released into the extracellular environment, but CTA1 attacks a target within the cytosol of a host cell. We recently reported that grape extract confers substantial resistance to CT. Here, we used a cell culture system to identify twelve individual phenolic compounds from grape extract that inhibit CT. Additional studies determined the mechanism of inhibition for a subset of the compounds: two inhibited CT binding to the cell surface and even stripped CT from the plasma membrane of a target cell; two inhibited the enzymatic activity of CTA1; and four blocked cytosolic toxin activity without directly affecting the enzymatic function of CTA1. Individual polyphenolic compounds from grape extract could also generate cellular resistance to diphtheria toxin, exotoxin A, and ricin. We have thus identified individual toxin inhibitors from grape extract and some of their mechanisms of inhibition against CT.
Cholera toxin (CT) travels by vesicle carriers from the cell surface to the endoplasmic reticulum (ER) where the catalytic A1 subunit of CT (CTA1) dissociates from the rest of the toxin, unfolds, and moves through a membrane-spanning translocon pore to reach the cytosol. Heat shock protein 90 (HSP90) binds to the N-terminal region of CTA1 and facilitates its ER-to-cytosol export by refolding the toxin as it emerges at the cytosolic face of the ER membrane. HSP90 also refolds some endogenous cytosolic proteins as part of a foldosome complex containing heat shock cognate 71-kDa protein (HSC70) and the HSC70/ HSP90-organizing protein (HOP) linker that anchors HSP90 to HSC70. We accordingly predicted that HSC70 and HOP also function in CTA1 translocation. Inactivation of HSC70 by drug treatment disrupted CTA1 translocation to the cytosol and generated a toxin-resistant phenotype. In contrast, the depletion of HOP did not disrupt CT activity against cultured cells. HSC70 and HSP90 could bind independently to disordered CTA1, even in the absence of HOP. This indicated HSP90 and HSC70 recognize distinct regions of CTA1, which was confirmed by the identification of a YYIYVI-binding motif for HSC70 that spans residues 83-88 of the 192-amino acid CTA1 polypeptide. Refolding of disordered CTA1 occurred in the presence of HSC70 alone, indicating that HSC70 and HSP90 can each independently refold CTA1. Our work suggests a novel translocation mechanism in which sequential interactions with HSP90 and HSC70 drive the N-to C-terminal extraction of CTA1 from the ER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.