Defects in the gene encoding Bruton's tyrosine kinase (Btk), normally expressed in B cells, cause X-linked agammaglobulinemia (XLA). The phenotype of XLA is characterized by a lack of circulating B cells and immunoglobulin. It has been suggested that B cell maturation from the pre-B cell stage to more mature stages is dependent on the appropriate expression of this gene. The Btk mRNA is expressed in B cells and myeloid cells, but protein expression in relation to B cell maturation has not been determined. Moreover, expression of the Btk protein has so far only been investigated in human Epstein-Barr virus-transformed B cell lines, and in murine splenocytes and B cell lines. We have developed an antiserum which recognizes the human Btk protein and shown that normal human tonsillar B cells, peripheral blood monocytes and myeloid cells express the protein, whereas tonsil-derived T cells do not. We also show that the protein is present in early and mature human B cell lines, but is absent in terminally differentiated plasma cell lines. Furthermore, expression is reduced or absent in three B lineage cell lines derived from two patients with defined genetic mutations in Btk and suffering from XLA.
The platelet-endothelial cell adhesion molecule-1 (PE-CAM-1), defined by the CD31 monoclonal antibody (MoAb), was initially described as a cell-cell adhesion molecule mediating both homotypic and heterotypic adhesion. In this report, we show that enriched CD34+ human hematopoietic progenitor cell populations, containing early myeloid, erythroid, and multipotential progenitor cells, are CD31+. Analyses of CD34+ cell lines representing early myeloid, multipotential, and pre- pre-B-lymphoid progenitors indicate that precursors of both myeloid and B-lymphoid cells express PECAM-1 at high levels. Three-color flow- cytometric analyses also show that normal human bone marrow CD31+ CD34+ subsets coexpress myeloid (CD33) or B-lymphoid (CD19, CD10) markers. Except for the monocytic cell line, U937, all CD34- cell lines tested, which represent more mature stages of the myeloid, erythroid, and lymphoid lineages, expressed substantially lower or negligible levels of PECAM-1. Western blotting studies indicated that the CD31 MoAb, JC/70A, detected molecules in the 120- to 140-kD molecular weight range on the monocytic CD34- CD33+ CD31+ cell line, U937; on the CD34+ CD31+ CD33+ CD19- multipotential/lymphomyeloid precursor cell lines, KG1 and KG1B; on the CD34+ CD31+ CD19+ CD10+ CD33- precursor pre-pre-B-cell line, MIK-ALL; and on a CD34(+)-enriched precursor cell population from normal human bone marrow. A single molecular weight species was generally observed with enriched membrane preparations, whereas two PECAM-1 molecules were present in whole-cell lysates of cell lines and the CD34+ bone marrow cell subset. Preliminary studies show that a proportion of the PECAM-1 molecules on the lymphomyeloid/multipotential progenitor cell line, KG1, and on the monocytic cell line, U937, binds to heparin-sepharose. A soluble form of PECAM-1 also binds heparin- sepharose. The high level of expression of PECAM-1 on CD34+ cells suggests that this glycoprotein may function as a heterotypic adhesion molecule, possibly mediating multipotential, myeloid, and early-B- lymphoid precursor cell interactions with stromal cells and extracellular matrix molecules via heparan sulfate proteoglycans. It may also act as a homotypic adhesion molecule by interacting with PECAM- 1 on bone marrow stromal macrophage-like cells and endothelial cells or on endothelial cells during stem/progenitor cell migration. Thus, this molecule has the potential importance of directing both lineage commitment and trafficking of early hematopoietic progenitor cells.
X-linked agammaglobulinemia is a primary inherited immunodeficiency resulting in a lack of or dramatic reduction in the number of mature B lymphocytes and, thus, greatly reduced levels of serum immunoglobulin. The defect results from mutations in the gene for Bruton's tyrosine kinase (Btk). Using rabbit antisera generated against Btk, we have demonstrated an increase in the level of in vitro kinase activity present in anti-Btk immunoprecipitates from B cells following stimulation with anti-immunoglobulin antibody. This increase in immune complex kinase activity is detectable 1 to 2 min following stimulation and remains elevated for over 30 min. A similar increase was not seen with two late pre-B cell lines investigated in the same way. This stimulation of activity may suggest a role for Btk in signalling through the B cell receptor or associated proteins, in mature B cells.
SUMMARYXLA bone marrow samples were shown to contain B cells expressing IgM, and pre-B cells that express the m-surrogate light chain (mwLC) complex, albeit at a reduced frequency to that found in normal bone marrow. Antibody ligation of m heavy chain on these cells and an XLA B cell line did not induce a Ca 2þ flux, whereas ligation of m heavy chain on normal bone marrow cells, mwLC þ pre-B cell lines and an IgM þ B cell line did. The block in XLA B cells was not due to a defect in the basic mechanism of Ca 2þ flux generation, as the cells responded well to thapsigargin. In addition, the defect did not affect T cells, which were shown to respond to CD3 antibody with a Ca 2þ flux. Ligation of m heavy chain on XLA bone marrow cells did, however, activate tyrosine kinases, resulting in tyrosine phosphorylation of a cellular protein with a molecular weight of approximately 115 kD. These results indicate that Btk may be necessary for the generation of the Ca 2þ flux in response to ligation of m heavy chain on B cells and mwLC þ pre-B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.