The Soil Management Assessment Framework (SMAF) may provide insight into how conservation practices affect soil quality (SQ) regionally. Therefore, we aimed to quantify SQ in a long‐term (15‐yr) crop rotation and bio‐covers experiment under no‐tillage using SMAF. Main effects were cropping rotations of soybean [Glycine max (L.) Merr.], corn (Zea mays L.), and cotton (Gossypium hirsutum L.). Split‐block bio‐cover treatments consisted of winter wheat (Triticum aestivum L.), Austrian winter pea (Pisum sativum L. sativum var. arvense), hairy vetch (Vicia villosa Roth), poultry litter, and fallow (control). Seven SQ indicators—soil pH, total organic carbon (TOC), bulk density (BD), soil extractable P and K, electrical conductivity (EC), and sodium adsorption ration (SAR)—were scored using SMAF algorithms, and investigated individually and as an overall soil quality index (SQI). Simple linear regressions were performed between SQI and crop yields. Differences (p < .05) in SQI within rotations varied when analyzed across and by depth. Overall, cotton–corn and/or continuous corn had greater SQI than soybean‐based rotations. Poultry litter had the greatest TOC, pH, K, and BD scores at the 0‐ to 15‐cm soil depth, and the lowest SQI. Reductions in SQI within bio‐covers were linked to P scores. A positive relationship was found between SQI and cotton yield at the 15‐ to 30‐cm soil depth (R2 = .48; p < .05). Investigating SMAF scores individually and separately per depth addresses the effects of long‐term conservation practices on SQ. Overall, SMAF can be used to develop best management practices and nutrient management strategies.
Understanding the impacts of long‐term agricultural practices on soil quality (SQ) is key for sustaining agroecosystem productivity. This study investigated conventional and no‐tillage (NT), residue burning and no burning, residue level (high and low), and irrigation (irrigated and dryland) effects on soil properties, SQ, and crop yields following 16 yr of a wheat (Triticum aestivum L.)–soybean [Glycine max (L.) Merr.] double‐crop system via the Soil Management Assessment Framework (SMAF). A field experiment was conducted in the Lower Mississippi River Delta region on a silt‐loam soil. Bulk density, soil organic C (SOC), total N (TN), pH, electrical conductivity (EC), and soil P and K from the 0‐ to 10‐cm soil depth were used as SQ indicators investigated individually and as an overall soil quality index (SQI). Following 16 yr, residue burning reduced SOC (1.1%) compared with no burning (1.24%). Irrigation resulted in greater soil TN than dryland management systems (p < 0.05). Reduced soil pH and extractable soil P and K occurred under NT, high residue, and irrigated treatments. Irrigation increased soybean yields, regardless of the tillage system. Burned, NT–high residue management increased wheat yields (3.45 Mg ha−1). Irrigation reduced SQ because of low EC and K scores. High residue reduced SQ compared with the low residue treatment within NT systems, owing to low pH scores. The SMAF indices identified the impacts of irrigation, NT, and optimal N fertilization on SQ. Monitoring of soil pH, P, and K may be needed to maintain SQ in long‐term wheat–soybean systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.