A variety of physical mechanisms are jointly responsible for facilitating air‐sea gas transfer through turbulent processes at the atmosphere‐ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k660) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s−1 and significant wave heights to 8 m. Measurements of k660 for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U10N), following a power law relationship of the form: k660 CO2∼U10N1.68 and k660 dms∼U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and sea state in a complex manner, with k660 CO2 increasing as the wind sea approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean‐Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a sea state‐dependent calculation of bubble‐mediated transfer, successfully reproduces the mean trend in observed k660 with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.
.[1] The effects of particle fields including bubbles on the optical volume scattering function (VSF) were investigated in the surf zone off Scripps Pier as part of an ongoing effort to better understand the underlying dynamics in the VSF in the subsurface ocean. VSFs were measured at 20 Hz at angles spanning 10°-170°in 10°increments with a device called the Multiangle Scattering Optical Tool (MASCOT). Modification of the phase function was observed in passing suspended sediment plumes, wave-injected bubble plumes, and combinations of these particle populations relative to the background. Phase function enhancement in the 60°-80°range was observed in association with bubble plumes, consistent with theoretical predictions. VSFs were inverted to infer size distributions and composition using a least squares minimization fitting procedure applied to a library of phase functions, each representing a lognormally distributed subpopulation with refractive index and coating, where applicable. Phase functions representative of nonspherical mineral particle subpopulations were computed using discrete dipole approximation (DDA) and improved geometric optics method (IGOM) techniques for randomly oriented, asymmetric hexahedra. Phase functions for coated bubbles were computed with the Lorenz-Mie theory. Inversion results exhibited stable solutions that qualitatively agreed with concurrent acoustical measurements of bubbles, aggregate particle size distribution expectations, and anecdotal videography evidence from the field. Although a comparable inversion with a library that assumed spherical shaped particles alone provided less stable results with some incorrectly assigned subpopulations, several dominant subpopulation trends were consistent with the results obtained using nonspherical representations of mineral particles.Citation: Twardowski, M., X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar (2012), The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,
[1] Many studies have investigated bubble size distributions in the ocean, but the measured size range does not normally extend to bubbles with a radius below 20 mm. Bubbles smaller than this are thought to have a significant effect on the optical properties of the ocean, potentially affecting remotely sensed measurements of ocean color and the optical detection of particulates and dissolved matter. Such optical data are becoming the major source of oceanic information about algal blooms, primary productivity, sediment loading and the spread of pollutants. The challenges associated with measuring these bubbles are difficulty of calibrating sensors with independent bubble size measurements and lack of knowledge about the organic coating on the bubbles. This paper describes simultaneous oceanic measurements of these small bubbles using independent optical and acoustical techniques. These measurements agree well, and an investigation of the bubble coating parameters was made. Both the optical and acoustical properties of bubbles are affected by this organic coating, and a comparison of these measurements narrows down the choice of possible coating parameters. Our results suggest that the bubbles measured in this study were likely to have a coating with a thickness of 10 nm and a refractive index of 1.18, and that the coating thickness is the more important parameter for optical inversions. The research described here is the first attempt to constrain these parameters in the ocean using two independent techniques and suggests that further studies of this type could result in significant insight into oceanic bubble coatings.
Gas bubbles in water act as oscillators with a natural frequency inversely proportional to their radius and a quality factor determined by thermal, radiation, and viscous losses. The linear dynamics of spherical bubbles are well understood, but the excitation mechanism leading to sound production at the moment of bubble creation has been the subject of speculation. Experiments and models presented here show that sound from bubbles released from a nozzle can be excited by the rapid decrease in volume accompanying the collapse of the neck of gas which joins the bubble to its parent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.