An exact, analytical solution is developed for the problem of acoustic-wave scattering from a cluster of ideal, gaseous, spherical bubbles in an unbounded, homogeneous, host fluid. This solution takes into account all modes of oscillation of the bubbles as well as all interactions between them; it is applicable to a wide range of bubble sizes and excitation frequencies. In the low frequency regime, the theory of this paper is shown to reduce to the "monopole" approximation, the effect of higher-order modes being non-negligible only for very small bubble-to-bubble separations. A numerical study of interactive backscattering from small clusters, comprising up to three ideal bubbles, is presented. Interactions between the bubbles are shown to produce downward shifts in the resonance frequency of the cluster, when the scattering configuration is symmetric. Furthermore, asymmetries of the scattering configuration are shown to generate sharp resonances at frequencies above the resonance of the symmetric mode. The results of this paper agree with previous theoretical and experimental work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.