We demonstrate a novel strategy for mixing solutions and initiating chemical reactions in microfluidic systems. This method utilizes highly focused nanosecond laser pulses from a Q-switched Nd:YAG laser at lambda = 532 nm to generate cavitation bubbles within 100- and 200-microm-wide microfluidic channels containing the parallel laminar flow of two fluids. The bubble expansion and subsequent collapse within the channel disrupts the laminar flow of the parallel fluid streams and produces a localized region of mixed fluid. We use time-resolved imaging and fluorescence detection methods to visualize the mixing process and to estimate both the volume of mixed fluid and the time scale for the re-establishment of laminar flow. The results show that mixing is initiated by liquid jets that form upon cavitation bubble collapse and occurs approximately 20 micros following the delivery of the laser pulse. The images also reveal that mixing occurs on the millisecond time scale and that laminar flow is re-established on a 50-ms time scale. This process results in a locally mixed fluid volume in the range of 0.5-1.5 nL that is convected downstream with the main flow in the microchannel. We demonstrate the use of this mixing technique by initiating the horseradish peroxidase-catalyzed reaction between hydrogen peroxide and nonfluorescent N-acetyl-3,7-dihydroxyphenoxazine (Amplex Red) to yield fluorescent resorufin. This approach to generate the mixing of adjacent fluids may prove advantageous in many microfluidic applications as it requires neither tailored channel geometries nor the fabrication of specialized on-chip instrumentation.
We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at λ = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavitation bubble formation. The confinement offered by the microfluidic channel constrains substantially the cavitation bubble expansion and results in significant deformation of the PDMS channel walls. To examine the cell lysis and dispersal of the cellular contents, we acquire timeresolved fluorescence images of the process in which the cells were loaded with a fluorescent dye. These fluorescence images reveal cell lysis to occur on the nanosecond to microsecond time scale by the plasma formation and cavitation bubble dynamics. Moreover, the time-resolved fluorescence images show that while the cellular contents are dispersed by the expansion of the laser-induced cavitation bubble, the flow associated with the bubble collapse subsequently re-localizes the cellular contents to a small region. This capacity of pulsed laser microbeam irradiation to achieve rapid cell lysis in microfluidic channels with minimal dilution of the cellular contents has important implications for their use in lab-on-a-chip applications.
Cell lysis and molecular delivery in confluent monolayers of PtK 2 cells are achieved by the delivery of 6 ns, λ = 532 nm laser pulses via a 40×, 0.8 NA microscope objective. With increasing distance from the point of laser focus we find regions of (a) immediate cell lysis; (b) necrotic cells that detach during the fluorescence assays; (c) permeabilized cells sufficient to facilitate the uptake of small (3kDa) FITC-conjugated Dextran molecules in viable cells; and (d) unaffected, viable cells. The spatial extent of cell lysis, cell detachment, and molecular delivery increased with laser pulse energy. Hydrodynamic analysis from time-resolved imaging studies reveal that the maximum wall shear stress associated with the pulsed laser microbeam-induced cavitation bubble expansion governs the location and spatial extent of each of these regions independent of laser pulse energy. Specifically, cells exposed to maximum wall shear stresses τ w, max > 190 ± 20 kPa are immediately lysed while cells exposed to τ w, max > 18 ± 2kPa are necrotic and subsequently detach. Cells exposed to τ w, max in the range 8-18 kPa are viable and successfully optoporated with 3kDa Dextran molecules. Cells exposed to τ w, max < 8 ± 1 kPa remain viable without molecular delivery. These findings provide the first direct correlation between pulsed laser microbeam-induced shear stresses and subsequent cellular outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.