Macrophages are considered of central importance in cell-to-cell transmission of human immunodeficiency virus (HIV) infection in vivo. In this report, we describe a novel cell-to-cell transmission model using HIV-infected monocyte-derived macrophages (MDMs) as donor cells and peripheral blood lymphocytes (PBLs) as recipients. Virus was transmitted during a 2-h coincubation period from intracellular or tightly cell-associated viral stores in adherent infected MDMs to nonadherent CD3(+) PBLs. Transmission required cell contact, but syncytia formation was not observed. HIV cell-to-cell transmission occurred in both allogeneic and autologous systems, and replication was higher in phytohemagglutinin (PHA)-stimulated than unstimulated recipient PBLs. In contrast, transmission of infection by cell-free virus was barely detectable without PHA stimulation of recipients, suggesting the cell-cell interaction may have provided stimuli to recipient cells in the cell-to-cell system. Viral DNA levels increased 5-24 h postmixing, and this increase was inhibited by pretreatment of cells with the reverse transcription inhibitor azidothymidine, indicating de novo reverse transcription was involved. Cell-to-cell transmission was more efficient than infection with cell-free virus released from donor MDMs, or 0.1 TCID(50)/cell cell-free viral challenge. This model provides a system to further investigate the mechanisms and characteristics of HIV cell-to-cell transmission between relevant primary cells that may be analogous to this important mode of virus spread in vivo.
Abstract. The severity of dengue virus infection ranges from mild fever to dengue hemorrhagic fever and shock syndrome. The association of disease severity with virus replication in monocyte-derived macrophages (MDMs) was examined for dengue virus type 2 (DEN-2) isolates from Asia or America. Additionally, we constructed DEN-2 recombinant viruses with substitutions at residue 390 in the envelope glycoprotein (E390) because this residue is linked with the region of virus origin. Comparisons of virus yields of 3 isolates failed to show a correlation with clinical disease. However, the American strain did not replicate as well as the 2 Asian strains. For the recombinant viruses, substitution of Asn (Asian) at E390 with Asp (American) resulted in decreased ability to replicate in MDMs. These results are consistent with the proposal that the lack of association of native American DEN-2 strains with severe disease is linked to reduced ability to replicate in MDMs, and that Asp at E390 may contribute to this reduction.
The ability of dengue virus-infected human monocyte-derived macrophages to induce permeability changes in primary human umbilical vein endothelial cells was investigated. Supernatants from dengue virus type 2-infected monocyte-derived macrophages increased permeability in human umbilical vein endothelial cell monolayers without inducing endothelial cell infection. Production of permeabilising activity from monocyte-derived macrophages occurred after the peak of progeny virus release. TNF-alpha, a known inducer of endothelial cell permeability, was released from dengue virus infected monocyte-derived macrophages but its release did not coincide with release of endothelial cell permeabilising activity. Permeability induction was enhanced by pre-incubation with supernatants from infected monocyte-derived macrophages harvested at the time of peak release of TNF-alpha and infectious virus. Thus, supernatants from dengue virus-infected monocyte-derived macrophages contain factors that increase human umbilical vein endothelial cell permeability, but this is not accompanied by endothelial cell infection or directly correlated with release of dengue virus or TNF-alpha from monocyte-derived macrophages. This model system can be used for further in vitro analysis of mechanisms that may relate to capillary leakage and the development of dengue haemorrhagic fever/dengue shock syndrome.
To study the effect of potential human immunodeficiency virus type 1 (HIV-1) integrase inhibitors during virus replication in cell culture, we used a modified nested Alu-PCR assay to quantify integrated HIV DNA in combination with the quantitative analysis of extrachromosomal HIV DNA. The two diketo acid integrase inhibitors (L-708,906 and L-731,988) blocked the accumulation of integrated HIV-1 DNA in T cells following infection but did not alter levels of newly synthesized extrachromosomal HIV DNA. In contrast, we demonstrated that L17 (a member of the bisaroyl hydrazine family of integrase inhibitors) and AR177 (an oligonucleotide inhibitor) blocked the HIV replication cycle at, or prior to, reverse transcription, although both drugs inhibited integrase activity in cell-free assays. Quercetin dihydrate (a flavone) was shown to not have any antiviral activity in our system despite reported anti-integration properties in cell-free assays. This refined Alu-PCR assay for HIV provirus is a useful tool for screening anti-integration compounds identified in biochemical assays for their ability to inhibit the accumulation of integrated HIV DNA in cell culture, and it may be useful for studying the effects of these inhibitors in clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.