Single-molecule FRET has been widely used for monitoring proteinnucleic acids interactions. Direct visualization of the interactions, however, often requires a site-specific labeling of the protein, which can be circuitous and inefficient. In addition, FRET is insensitive to distance changes in the 0-3-nm range. Here, we report a systematic calibration of a single molecule fluorescence assay termed protein induced fluorescence enhancement. This method circumvents protein labeling and displays a marked distance dependence below the 4-nm distance range. The enhancement of fluorescence is based on the photophysical phenomenon whereby the intensity of a fluorophore increases upon proximal binding of a protein. Our data reveals that the method can resolve as small as a single base pair distance at the extreme vicinity of the fluorophore, where the enhancement is maximized. We demonstrate the general applicability and distance sensitivity using (a) a finely spaced DNA ladder carrying a restriction site for BamHI, (b) RNA translocation by DExH enzyme RIG-I, and (c) filament dynamics of RecA on single-stranded DNA. The high spatio-temporal resolution data and sensitivity to short distances combined with the ability to bypass protein labeling makes this assay an effective alternative or a complement to FRET.cis-trans isomerization | DNA-protein interaction | RNA-protein interaction | label free protein S ingle-molecule Förster resonance energy transfer (FRET) has been a powerful tool in probing protein-nucleic acid interactions as demonstrated by numerous studies revealing unexpected dynamic movement and conformational changes of proteins that cannot be resolved by conventional ensemble techniques (1-4). Despite such advantages, FRET measurement is often limited to proteins that can be site-specifically labeled and the protein's interaction with the corresponding DNA or RNA in a FRETsensitive distance range of 3 to 8 nm (5). The conjugation of fluorescent dye to a protein involves mutagenesis (6) and/or chemical modifications (7), which may disrupt the structure and function of the protein. Furthermore, the labeling procedures are not straightforward and are often labor intensive yet with a low yield.Recently we developed an alternative single molecule assay termed protein induced fluorescence enhancement (PIFE) whereby the emission of a fluorescent dye reports on its proximity to an interacting protein; i.e., the dye becomes brighter when a protein approaches its vicinity (8). This photophysical effect was originally employed in stop flow measurement (9) for monitoring directional movement of DNA motor proteins in ensemble (10-13), for following the dynamics of DNA and RNA polymerases on DNA (14, 15), and for detecting the motion of helicases on RNA or DNA at the single-molecule level (16,17). This photophysical characteristic is exhibited by fluorophores such as Cy3, which undergoes cis-trans isomerization reaction. External factors such as protein reduce the rate at which the fluorophore isomerizes from the photo-acti...
Single molecule studies of protein–nucleic acid interactions shed light on molecular mechanisms and kinetics involved in protein binding, translocation, and unwinding of DNA and RNA substrates. In this review, we provide an overview of a single molecule fluorescence method, termed “protein induced fluorescence enhancement” (PIFE). Unlike FRET where two dyes are required, PIFE employs a single dye attached to DNA or RNA to which an unlabeled protein is applied. We discuss both ensemble and single molecule studies in which PIFE was utilized.
SUMMARY Human telomeres possess a single-stranded DNA (ssDNA) overhang of TTAGGG repeats, which can self-fold into a G-quadruplex structure. POT1 binds specifically to the telomeric overhang and partners with TPP1 to regulate telomere lengthening and capping, although the mechanism remains elusive. Here, we show that POT1 binds stably to folded telomeric G-quadruplex DNA in a sequential manner, one oligonucleotide/oligosaccharide binding fold at a time. POT1 binds from 3′ to 5′, thereby unfolding the G-quadruplex in a stepwise manner. In contrast, the POT1-TPP1 complex induces a continuous folding and unfolding of the G-quadruplex. We demonstrate that POT1-TPP1 slides back and forth on telomeric DNA and also on a mutant telomeric DNA to which POT1 cannot bind alone. The sliding motion is specific to POT1-TPP1, as POT1 and ssDNA binding protein gp32 cannot recapitulate this activity. Our results reveal fundamental molecular steps and dynamics involved in telomere structure regulation.
G-quadruplex (GQ) is a four stranded DNA secondary structure that arises from a guanine rich sequence. Stable formation of GQ in genomic DNA can be counteracted by the resolving activity of specialized helicases including RNA helicase AU (associated with AU rich elements) (RHAU) (G4 resolvase 1), Bloom helicase (BLM), and Werner helicase (WRN). However, their substrate specificity and the mechanism involved in GQ unfolding remain uncertain. Here, we report that RHAU, BLM, and WRN exhibit distinct GQ conformation specificity, but use a common mechanism of repetitive unfolding that leads to disrupting GQ structure multiple times in succession. Such unfolding activity of RHAU leads to efficient annealing exclusively within the same DNA molecule. The same resolving activity is sufficient to dislodge a stably bound GQ ligand, including BRACO-19, NMM, and Phen-DC3. Our study demonstrates a plausible biological scheme where different helicases are delegated to resolve specific GQ structures by using a common repetitive unfolding mechanism that provides a robust resolving power.
The G-rich single stranded DNA at the 3′ end of human telomeres can self-fold into G-quaduplex (GQ). However, telomere lengthening by telomerase or the recombination-based alternative lengthening of telomere (ALT) mechanism requires protein loading on the overhang. Using single molecule fluorescence spectroscopy we discovered that lengthening the telomeric overhang also increased the rate of dynamic exchanges between structural conformations. Overhangs with five to seven TTAGGG repeats, compared to four repeats, showed much greater dynamics and accessibility to telomerase binding and activity, and loading of the ALT-associated proteins RAD51, WRN and BLM. Although the eight repeats are highly dynamic, they can fold into two GQs, which limited protein accessibility. In contrast, the telomere-specific protein, POT1 is unique in that it binds independently of repeat number. Our results suggest that the telomeric overhang length and dynamics may contribute to the regulation of telomere extension via telomerase action and the ALT mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.