Homologous recombination in embryonal stem cells has been used to produce a fusion oncogene, thereby mimicking chromosomal translocations that frequently result in formation of tumor-specific fusion oncogenes in human malignancies. AF9 sequences were fused into the mouse Mll gene so that expression of the Mll-AF9 fusion gene occurred from endogenous Mll transcription control elements, as in t(9;11) found in human leukemias. Chimeric mice carrying the fusion gene developed tumors, which were restricted to acute myeloid leukemias despite the widespread activity of the Mll promoter. Onset of perceptible disease was preceded by expansion of ES cell derivatives in peripheral blood. This novel use of homologous recombination formally proves that chromosomal translocations contribute to malignancy and provides a general strategy to create fusion oncogenes for studying their role in tumorigenesis.
We have developed a strategy for chromosome engineering in embryonic stem (ES) cells that relies on sequential gene targeting and Cre-loxP site-specific recombination. Gene targeting was first used to integrate loxP sites at the desired positions in the genome. Transient expression of Cre recombinase was then used to mediate the chromosomal rearrangement. A genetic selection relying on reconstruction of a selectable marker from sequences co-integrated with the loxP sites allowed detection of cells containing the Cre-mediated rearrangement. A programmed translocation between the c-myc and immunoglobulin heavy chain genes on chromosomes 15 and 12 was created by this method. This strategy will allow the design of a variety of chromosome rearrangements that can be selected and verified in ES cells or activated in ES cell-derived mice.
Gene transfer has therapeutic potential for treating HIV-1 infection by generating cells that are resistant to the virus. We have engineered a novel self-inactivating lentiviral vector, LVsh5/C46, using two viral-entry inhibitors to block early steps of HIV-1 cycle. The LVsh5/C46 vector encodes a short hairpin RNA (shRNA) for downregulation of CCR5, in combination with the HIV-1 fusion inhibitor, C46. We demonstrate here the effective delivery of LVsh5/C46 to human T cell lines, peripheral blood mononuclear cells, primary CD4+ T lymphocytes, and CD34+ hematopoietic stem/progenitor cells (HSPC). CCR5-targeted shRNA (sh5) and C46 peptide were stably expressed in the target cells and were able to effectively protect gene-modified cells against infection with CCR5- and CXCR4-tropic strains of HIV-1. LVsh5/C46 treatment was nontoxic as assessed by cell growth and viability, was noninflammatory, and had no adverse effect on HSPC differentiation. LVsh5/C46 could be produced at a scale sufficient for clinical development and resulted in active viral particles with very low mutagenic potential and the absence of replication-competent lentivirus. Based on these in vitro results, plus additional in vivo safety and efficacy data, LVsh5/C46 is now being tested in a phase 1/2 clinical trial for the treatment of HIV-1 disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.