The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic1-5. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca2+-permeable non-selective cationic channels for detection of noxious mechanical impact6-8. Here we show Piezo1 (FAM38A) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. Importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx was protease activity and spatial organization of endothelial cells to the polarity of the applied force. The data suggest Piezo1 channels as pivotal integrators in vascular biology.
Leptin, a hormone secreted by adipocytes, plays a pivotal role in the control of body weight. Rodents with mutations in the leptin receptor gene develop morbid obesity. It is possible, therefore, that leptin receptor gene mutations contribute to human obesity. To test this possibility, we determined the entire coding sequence of the human leptin receptor cDNA from peripheral blood lymphocytes of 22 morbidly obese patients with body-mass index (BMI) between 35.1 and 60.9 kg/m2. We identified five common DNA sequence variants distributed throughout the coding sequence at codons 109, 223, 343, 656 and 1019, one rare silent mutation at codon 986 and one novel alternatively spliced form of transcript. None of the five common variants, including the three that predict amino acid changes, are null mutations causing morbid obesity, because homozygotes for the variant sequences were also found in lean subjects. Furthermore, the frequency of each variant allele and the distribution of genotypes and haplotypes were similar in 190 obese (BMI >28 kg/m2) and 132 lean (BMI <22 kg/m2) white British males selected from a population-based epidemiological survey. In these subjects, there was no evidence for a significant effect of the common variants on obesity or obesity-related phenotypes. These results suggest that mutations in the leptin receptor gene are not a common cause of human obesity.
Insulin resistance is characterized by excessive endothelial cell generation of potentially cytotoxic concentrations of reactive oxygen species. We examined the role of NADPH oxidase (Nox) and specifically Nox2 isoform in superoxide generation in two complementary in vivo models of human insulin resistance (endothelial specific and whole body). Using three complementary methods to measure superoxide, we demonstrated higher levels of superoxide in insulin-resistant endothelial cells, which could be pharmacologically inhibited both acutely and chronically, using the Nox inhibitor gp91ds-tat. Similarly, insulin resistance–induced impairment of endothelial-mediated vasorelaxation could also be reversed using gp91ds-tat. siRNA-mediated knockdown of Nox2, which was specifically elevated in insulin-resistant endothelial cells, significantly reduced superoxide levels. Double transgenic mice with endothelial-specific insulin resistance and deletion of Nox2 showed reduced superoxide production and improved vascular function. This study identifies Nox2 as the central molecule in insulin resistance–mediated oxidative stress and vascular dysfunction. It also establishes pharmacological inhibition of Nox2 as a novel therapeutic target in insulin resistance–related vascular disease.
Autoimmune polyendocrinopathy type 1 (APS1) is an autosomal recessive disorder characterized by autoimmune hypoparathyroidism, autoimmune adrenocortical failure, and mucocutaneous candidiasis. Recently, an autoimmune regulator gene (AIRE-1), which is located on chromosome 21q22.3, has been identified, and mutations in European kindreds with APS1 have been described. We used SSCP analysis and direct DNA sequencing to screen the entire 1,635-bp coding region of AIRE-1 in 12 British families with APS1. A 13-bp deletion (964del13) was found to account for 17 of the 24 possible mutant AIRE-1 alleles, in our kindreds. This mutation was found to occur de novo in one affected subject. A common haplotype spanning the AIRE-1 locus was found in chromosomes that carried the 964del13 mutation, suggesting a founder effect in our population. One of 576 normal subjects was also a heterozygous carrier of the 964del13 mutation. Six other point mutations were found in AIRE-1, including two 1-bp deletions, three missense mutations (R15L, L28P, and Y90C), and a nonsense mutation (R257*). The high frequency of the 964del13 allele and the clustering of the other AIRE-1 mutations may allow rapid molecular screening for APS1 in British kindreds. Furthermore, the prevalence of the 964del13 AIRE-1 mutation may have implications in the pathogenesis of the more common autoimmune endocrinopathies in our population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.