Acute myeloid leukemia (AML) is a heterogeneous disease caused by a variety of mutations in transcription factors, epigenetic regulators and signaling molecules. To determine how different mutant regulators establish AML subtype-specific transcriptional networks we performed a comprehensive global analysis of cis-regulatory element activity and interaction, transcription factor occupancy and gene expression patterns in purified leukemic blast cells. Here, we focussed on specific sub-groups of patients carrying mutations in genes encoding transcription factors ( RUNX1, CEBPA) and signaling molecules ( FTL3-ITD, RAS, NPM1). Integrated analyses of these data demonstrates that each mutant regulator establishes a specific transcriptional and signaling network unrelated to that seen in normal cells, sustaining the expression of unique sets of genes required for AML growth and maintenance.
Key Points• RAS pathway mutations are prevalent in relapsed childhood ALL, and KRAS mutations are associated with a poorer overall survival.• RAS pathway mutations confer sensitivity to mitogenactivated protein kinase kinase inhibitors.For most children who relapse with acute lymphoblastic leukemia (ALL), the prognosis is poor, and there is a need for novel therapies to improve outcome. We screened samples from children with B-lineage ALL entered into the ALL-REZ BFM 2002 clinical trial (www. clinicaltrials.gov, #NCT00114348) for somatic mutations activating the Ras pathway (KRAS, NRAS, FLT3, and PTPN11) and showed mutation to be highly prevalent (76 from 206). Clinically, they were associated with high-risk features including early relapse, central nervous system (CNS) involvement, and specifically for NRAS/KRAS mutations, chemoresistance. KRAS mutations were associated with a reduced overall survival. Mutation screening of the matched diagnostic samples found many to be wild type (WT); however, by using more sensitive allelic-specific assays, low-level mutated subpopulations were found in many cases, suggesting that they survived up-front therapy and subsequently emerged at relapse. Preclinical evaluation of the mitogen-activated protein kinase kinase 1/2 inhibitor selumetinib (AZD6244, ARRY-142886) showed significant differential sensitivity in Ras pathway-mutated ALL compared with WT cells both in vitro and in an orthotopic xenograft model engrafted with primary ALL; in the latter, reduced RAS-mutated CNS leukemia. Given these data, clinical evaluation of selumetinib may be warranted for Ras pathway-mutated relapsed ALL. (Blood. 2014;124(23):3420-3430)
EVC is a novel protein mutated in the human chondroectodermal dysplasia Ellis-van Creveld syndrome (EvC; OMIM: 225500). We have inactivated Evc in the mouse and show that Evc-/- mice develop an EvC-like syndrome, including short ribs, short limbs and dental abnormalities. lacZ driven by the Evc promoter revealed that Evc is expressed in the developing bones and the orofacial region. Antibodies developed against Evc locate the protein at the base of the primary cilium. The growth plate of Evc-/- mice shows delayed bone collar formation and advanced maturation of chondrocytes. Indian hedgehog(Ihh) is expressed normally in the growth plates of Evc-/- mice, but expression of the Ihh downstream genes Ptch1 and Gli1 was markedly decreased. Recent studies have shown that Smo localises to primary cilia and that Gli3 processing is defective in intraflagellar transport mutants. In vitro studies using Evc-/- cells demonstrate that the defect lies downstream of Smo. Chondrocyte cilia are present in Evc-/- mice and Gli3 processing appears normal by western blot analysis. We conclude that Evc is an intracellular component of the hedgehog signal transduction pathway that is required for normal transcriptional activation of Ihh target genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.