The LiNi0.33Mn0.33Co0.33O2 compound is one of the most interesting cathode materials for Li-ion batteries. Li diffusion in this material directly influences charging/discharging times (and consequently power densities), maximum capacities, stress...
Cathode materials based on lithium-metal-oxide compounds are an essential technical component for lithium-ion batteries, which are still being researched and continuously improved. For a fundamental understanding of kinetic processes at and in electrodes the Li diffusion is of high relevance. Most cathode materials are based on the layered LiCoO2 (LCO) and LiNi0.33Mn0.33Co0.33O2 (NMC333). In the present study Li tracer self-diffusion is investigated in polycrystalline sintered bulk samples of sub-stoichiometric Li0.9CoO2 at 145 °C ≤ T ≤ 350 °C and compared to Li0.9Ni0.33Mn0.33Co0.33O2 in the temperature range between 110 and 350 °C. For analysis, stable 6Li tracers are used in combination with secondary ion mass spectrometry (SIMS). The Li tracer diffusivities D* of both compounds with a sub-stoichiometric Li concentration are identical within error limits and can be described by the Arrhenius law with an activation enthalpy of (0.76 ± 0.13) eV for LCO and (0.85 ± 0.03) eV for NMC333, which is interpreted as the migration energy of a single Li vacancy. This means that a modification of the transition metal (M) layer composition within the LiMO2 structure does not significantly influence lithium diffusion in the temperature range investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.