Glioblastoma is one of the most common malignant brain tumors. It has poor prognosis: the survival rate is 14-15 months, even with treatment by surgery, radiation, and chemotherapy. To develop more efficacious therapies, it is essential to generate preclinical mouse models that enable mechanistic studies. Multiple murine glioblastoma models have been generated, each with distinct advantages and disadvantages. The traditional Cre-LoxP system specifically targets glioblastoma-related genes but requires extended experimental timelines. CRISPR-Cas9 methods require less time to generate mouse models, yet the offtarget effects lead to variable glioblastoma phenotypes. Transposon-based insertional mutagenesis models can intercept and promote transcription but has strict limitation of insertional transgene size. Allograft cell line injection into immunocompetent mice prevents immune rejection but fails to recapitulate various features of human glioblastoma. Intracranial injection of patient-derived xenograft cell lines into immunocompromised mice preserves features of human glioblastoma but does not allow the study of immune cell function in preclinical immunotherapeutic approaches. Finally, humanized mouse models offer the potential to analyze the human adaptive immune response but not the innate
OBJECTIVE The profound immunosuppression found in glioblastoma (GBM) patients is a critical barrier to effective immunotherapy. Multiple mechanisms of tumor-mediated immune suppression exist, and the induction of immunosuppressive monocytes such as myeloid-derived suppressor cells (MDSCs) is increasingly appreciated as a key part of this pathology. GBM-derived extracellular vesicles (EVs) can induce the formation of MDSCs. The authors sought to identify the molecular consequences of these interactions in myeloid cells in order to identify potential targets that could pharmacologically disrupt GBM EV–monocyte interaction as a means to ameliorate tumor-mediated immune suppression. Heparin-sulfate proteoglycans (HSPGs) are a general mechanism by which EVs come into association with their target cells, and soluble heparin has been shown to interfere with EV-HSPG interactions. The authors sought to assess the efficacy of heparin treatment for mitigating the effects of GBM EVs on the formation of MDSCs. METHODS GBM EVs were collected from patient-derived cell line cultures via staged ultracentrifugation and cocultured with monocytes collected from apheresis cones from healthy blood donors. RNA was isolated from EV-conditioned and unconditioned monocytes after 72 hours of coculture, and RNA-sequencing analysis performed. For the heparin treatment studies, soluble heparin was added at the time of EV-monocyte coculture and flow cytometry analysis was performed 72 hours later. After the initial EV-monocyte coculture period, donor-matched T-cell coculture studies were performed by adding fluorescently labeled and stimulated T cells for 5 days of coculture. RESULTS Transcriptomic analysis of GBM EV–treated monocytes demonstrated downregulation of several important immunological and metabolic pathways, with upregulation of the pathways associated with synthesis of cholesterol and HSPG. Heparin treatment inhibited association between GBM EVs and monocytes in a dose-dependent fashion, which resulted in a concomitant reduction in MDSC formation (p < 0.01). The authors further demonstrated that reduced MDSC formation resulted in a partial rescue of immune suppression, as measured by effects on activated donor-matched T cells (p < 0.05). CONCLUSIONS The authors demonstrated that GBM EVs induce broad but reproducible reprogramming in monocytes, with enrichment of pathways that may portend an immunosuppressive phenotype. The authors further demonstrated that GBM EV–monocyte interactions are potentially druggable targets for overcoming tumor-mediated immune suppression, with heparin inhibition of EV-monocyte interactions demonstrating proof of principle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.