Experiments designed to simulate the low temperature surface chemistry occurring in interstellar clouds provide clear evidence of a reaction between oxygen atoms and propyne ice. The reactants are dosed onto a surface held at a fixed temperature between 14 and 100 K. After the dosing period, temperature programmed desorption (TPD), coupled with time-of-flight mass spectrometry, are used to identify two reaction products with molecular formulae C3H4O and C3H4O2. These products result from the addition of a single oxygen atom, or two oxygen atoms, to a propyne reactant. A simple model has been used to extract kinetic data from the measured yield of the single-addition (C3H4O) product at surface temperatures from 30-100 K. This modelling reveals that the barrier of the solid-state reaction between propyne and a single oxygen atom (160 +/- 10 K) is an order of magnitude less than that reported for the gas-phase reaction. In addition, estimates for the desorption energy of propyne and reaction rate coefficient, as a function of temperature, are determined for the single addition process from the modelling. The yield of the single addition product falls as the surface temperature decreases from 50 K to 30K, but rises again as the surface temperature falls below 30 K. This increase in the rate of reaction at low surface temperatures is indicative of an alternative, perhaps barrierless, pathway to the single addition product which is only important at low surface temperatures. The kinetic model has been further developed to characterize the double addition reaction, which appears to involve the addition of a second oxygen atom to C3H4O. This modelling indicates that this second addition is a barrierless process. The kinetic parameters we extract from our experiments indicate that the reaction between atomic oxygen and propyne could occur under on interstellar dust grains on an astrophysical time scale.
Toxic heavy metals, such as Pb(2+), have become important targets for the development of efficient receptors that are capable of recognizing their presence as environmental and biological pollutants, and an important part of that receptor-metal characterization process is the provision of spectral evidence that identifies the presence of a metal ion. From results reported here on a combined experimental and theoretical study it is shown that, when complexed with aromatic ligands, Pb(2+) is capable of yielding structured UV spectra, which: (i) exhibit discrete electronic transitions that include significant contributions from the metal ion; (ii) are very sensitive to the electronic properties of coordinating ligands; and (iii) are sensitive to subtle changes in coordination geometry. Two aromatic sandwich complexes, [Pb(benzene)2](2+) and [Pb(toluene)2](2+) have been prepared in the gas phase and their UV action spectra recorded from ions held and cooled in an ion trap. Whilst [Pb(benzene)2](2+) exhibits a spectrum with very little detail, that recorded for [Pb(toluene)2](2+) reveals a rich structure in the wavelength range 220-280 nm. Theory in the form of density functional theory (DFT) shows that both types of complex take the form of hemidirected structures, and that [Pb(toluene)2](2+) can adopt three distinct conformers depending upon the relative positions of the two methyl groups. Further calculations, using adiabatic time-dependent DFT to assign electronic transitions, provide evidence of individual [Pb(toluene)2](2+) conformers having been resolved in the experimental spectrum. Of particular significance for the development of methods for identifying Pb(2+) as an environmental or biological pollutant, is the observation that there are distinct ligand-to-metal charge transfer transitions in the UV that are sensitive to both the geometry and the electronic characteristics of molecules that accommodate the metal ion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.