Although many polar residues are directly involved in transmembrane protein functions, the extent to which they contribute to more general structural features is still unclear. Previous studies have demonstrated that asparagine residues can drive transmembrane helix association through interhelical hydrogen bonding We have studied the ability of other polar residues to promote helix association in detergent micelles and in biological membranes. Our results show that polyleucine sequences with Asn, Asp, Gln, Glu, and His, residues capable of being simultaneously hydrogen bond donors and acceptors, form homo-or heterooligomers. In contrast, polyleucine sequences with Ser, Thr, and Tyr do not associate more than the polyleucine sequence alone. The results therefore provide experimental evidence that interactions between polar residues in the helices of transmembrane proteins may serve to provide structural stability and oligomerization specificity. Furthermore, such interactions can allow structural flexibility required for the function of some membrane proteins.
In bacteria, translation of all the ribosomal protein cistrons in the spc operon mRNA is repressed by the binding of the product of one of them, S8, to an internal sequence at the 5 end of the L5 cistron. The way in which the first two genes of the spc operon are regulated, retroregulation, is mechanistically distinct from translational repression by S8 of the genes from L5 onward. A 2.8 Å resolution crystal structure has been obtained of Escherichia coli S8 bound to this site. Despite sequence differences, the structure of this complex is almost identical to that of the S8/helix 21 complex seen in the small ribosomal subunit, consistent with the hypothesis that autogenous regulation of ribosomal protein synthesis results from conformational similarities between mRNAs and rRNAs. S8 binding must repress the translation of its own mRNA by inhibiting the formation of a ribosomal initiation complex at the start of the L5 cistron.
BtuB is an outer membrane protein responsible for the uptake of vitamin B12 by Escherichia coli. It belongs to a family of bacterial transport proteins that derive energy for transport by coupling to the trans-periplasmic energy-coupling protein TonB. Using site-directed spin labeling and EPR we investigated the structure and substrate-induced changes in the TonB box, a highly conserved region in all TonB dependent transporters that may couple to TonB. In the absence of substrate, the line widths and collision parameters from EPR are consistent with this domain existing in a structured helical conformation that contacts the barrel of the transporter. Addition of substrate converts this segment into an extended structure that is highly dynamic, disordered and probably extended into the periplasm. This structural change demonstrates that the TonB box cycles between sequestered and accessible states in a substrate-dependent fashion. In a transport defective mutant of BtuB, this conformational cycle is disrupted and the TonB box appears to be extended even in the absence of substrate. These data suggest that the TonB box extends into the periplasm and interacts with TonB only in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.