Objectives We evaluated the in vitro activity of ceftolozane/tazobactam and comparator agents against MDR non-MBL Pseudomonas aeruginosa isolates collected from nine Greek hospitals and we assessed the potential synergistic interaction between ceftolozane/tazobactam and amikacin. Methods A total of 160 non-MBL P. aeruginosa isolates collected in 2016 were tested for susceptibility to ceftolozane/tazobactam and seven comparator agents including ceftazidime/avibactam. Time–kill assays were performed for synergy testing using ceftolozane/tazobactam 60 or 7.5 mg/L, corresponding to the peak and trough concentrations of a 1.5 g q8h dose, respectively, in combination with 69 mg/L amikacin, corresponding to the free peak plasma concentration. Synergy was defined as a ≥2 log10 cfu/mL reduction compared with the most active agent. Results Overall, ceftolozane/tazobactam inhibited 64.4% of the P. aeruginosa strains at ≤4 mg/L. Colistin was the most active agent (MIC50/90, 0.5/2 mg/L; 96.3% susceptible) followed by ceftazidime/avibactam (MIC50/90, 4/16 mg/L; 80.6% susceptible). GES-type enzymes were predominantly responsible for ceftolozane/tazobactam resistance; 81.6% of the non-producers were susceptible. MICs for the P. aeruginosa isolates selected for synergy testing were 2–32 mg/L ceftolozane/tazobactam and 2–128 mg/L amikacin. The combination of ceftolozane/tazobactam with amikacin was synergistic against 85.0% of all the isolates tested and against 75.0% of the GES producers. No antagonistic interactions were observed. Conclusions Ceftolozane/tazobactam demonstrated good in vitro activity against MDR/XDR P. aeruginosa clinical isolates, including strains with co-resistance to other antipseudomonal drugs. In combination with amikacin, a synergistic interaction at 24 h was observed against 85.0% of P. aeruginosa strains tested, including isolates with ceftolozane/tazobactam MICs of 32 mg/L or GES producers.
A B S T R A C TPneumococci (n = 1033) isolated in the major paediatric hospitals of Athens during 2001-2004 from children with invasive infections (n = 186), non-invasive infections (n = 641) and healthy carriers (n = 206) were studied. The most prevalent serotypes were serotypes 14 (44.6%), 19F (43.5%) and 6B (22.8%) in invasive, non-invasive and carriage isolates, respectively. Among invasive isolates, the potential coverage by the sevenvalent conjugate vaccine was 75.3%. Resistance rates to penicillin, amoxycillin, cefotaxime, erythromycin, co-trimoxazole, clindamycin, tetracycline and chloramphenicol were 44.6%, 2.7%, 1.2%, 43.6%, 43.5%, 12.4%, 34.7% and 5.9%, respectively. The M-phenotype accounted for 68.0% of the erythromycin-resistant isolates. All isolates were susceptible to ofloxacin.
We report the first isolation of Candida auris in Greece from a sputum culture of a cystic fibrosis patient in their 20s under posaconazole treatment. The pathogen was identified as C. duobushaemulonii by VITEK2YST, but as C. auris by MALDI-TOF MS . This case underscores the need for species-level identification of all non- albicans Candida (NAC) isolates from cystic fibrosis patients and patients with predisposing factors to fungal infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.