The calcium (Ca) concentration of plant shoot tissues varies systematically between angiosperm orders. The phylogenetic variation in the shoot concentration of other mineral nutrients has not yet been described at an ordinal level. The aims of this study were (1) to quantify the shoot mineral concentration of different angiosperm orders, (2) to partition the phylogenetic variation in shoot mineral concentration between and within orders, (3) to determine if the shoot concentration of different minerals are correlated across angiosperm species, and (4) to compare experimental data with published ecological survey data on 81 species sampled from their natural habitats. Species, selected pro rata from different angiosperm orders, were grown in a hydroponic system under a constant external nutrient regime. Shoots of 117 species were sampled during vegetative growth. Significant variation in shoot carbon (C), calcium (Ca), potassium (K), and magnesium (Mg) concentration occurred between angiosperm orders. There was no evidence for systematic differences in shoot phosphorus (P) or organic-nitrogen (N) concentration between orders. At a species level, there were strong positive correlations between shoot Ca and Mg concentration, between shoot P and organic-N concentration, and between shoot K concentration and shoot fresh weight:dry weight ratio. Shoot C and cation concentration correlated negatively at a species level. Species within the Poales and the Caryophyllales had distinct shoot mineralogies in both the designed experiment and in the ecological survey.
This study describes the variation in the mean relative shoot Ca content within the angiosperms at the ordinal level. Data were derived from studies in the literature in which the shoot Ca content of two or more species had been compared, and from a hydroponic experiment in which plants were selected to represent the relative number of species within each angiosperm order. Across all angiosperms, most of the variation in shoot Ca content occurred at and above the level of the order. Relative shoot Ca contents and variances correlated between literature and experimental data. In general, orders of commelinoid monocots had lower Ca contents than other monocot or eudicot orders. These results are used to illustrate how physiological and ecological hypotheses can be formulated using literature data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.