The process of myelination in the nervous system requires a coordinated formation of both transient and stable supramolecular complexes. Myelin-specific proteins play key roles in these assemblies, which may link membranes to each other or connect the myelinating cell cytoskeleton to the extracellular matrix. The myelin protein periaxin is known to play an important role in linking the Schwann cell cytoskeleton to the basal lamina through membrane receptors, such as the dystroglycan complex. Mutations that truncate periaxin from the C terminus cause demyelinating peripheral neuropathy, Charcot-Marie-Tooth (CMT) disease type 4F, indicating a function for the periaxin C-terminal region in myelination. We identified the cytoplasmic domain of β4 integrin as a specific high-affinity binding partner for periaxin. The C-terminal region of periaxin remains unfolded and flexible when bound to the third fibronectin type III domain of β4 integrin. Our data suggest that periaxin is able to link the Schwann cell cytoplasm to the basal lamina through a two-pronged interaction via different membrane protein complexes, which bind close to the N and C terminus of this elongated, flexible molecule.
The process of myelination in the nervous system requires coordinated formation of both transient and stable supramolecular complexes. Myelin-specific proteins play key roles in these assemblies, which may link membranes to each other or connect the myelinating cell cytoskeleton to the extracellular matrix. The myelin protein periaxin is known to play an important role in linking the Schwann cell cytoskeleton to the basal lamina through membrane receptors, such as the dystroglycan complex. Mutations that truncate periaxin from the C terminus cause demyelinating peripheral neuropathy, Charcot-Marie-Tooth disease type 4F, indicating a function for the periaxin C-terminal region in myelination. We identified the cytoplasmic domain of β4 integrin as a specific high-affinity binding partner for periaxin. The C-terminal region of periaxin remains unfolded and flexible when bound to the third fibronectin type III domain of β4 integrin. Our data suggest that periaxin is able to link the Schwann cell cytoplasm to the basal lamina through a two-pronged interaction via different membrane protein complexes, which bind close to the N and C terminus of this elongated, flexible molecule.
The objective of this study was to determine the physicochemical in-use stability of recently approved Thiotepa Riemser concentrate in the original vial and diluted ready-to-administer (RTA) infusion solutions in prefilled glucose 5% and 0.9% NaCl polyolefin bags. Thiotepa Riemser 10 mg/mL concentrates and infusion solutions (1 mg/mL, 2 mg/mL, 3 mg/mL) were prepared in triplicate and stored at 2–8 °C or 25 °C for 14 days. Thiotepa concentrations were determined using a stability-indicating RP-HPLC assay. In parallel, pH and osmolality were measured. Sub-visible particles were counted on day 0 and 14. Thiotepa Riemser concentrate was revealed to be stable for 14 days when stored at 2–8 °C, or for 24 h when stored at 25 °C. Thiotepa concentrations in infusion solutions stored at 2–8 °C remained above 95% of the initial concentrations for at least 14 days, regardless of the type of vehicle solution. When stored at 25 °C, thiotepa infusion solutions in glucose 5% proved to be physicochemically stable for 3 days (1 mg/mL), 5 days (2 mg/mL) or 7 days (3 mg/mL). Thiotepa infusion solutions in 0.9% NaCl remained physicochemically stable for 5 days (1 mg/mL) or 7 days (2 mg/mL, 3 mg/mL). At these points in time, the specification limit of ≤0.6% monochloro-adduct was fulfilled. In parallel, an elevation of the pH values was registered. Thiotepa concentrates and infusion solutions should be stored at 2–8 °C due to temperature-dependent physicochemical stability, and for microbiological reasons. Glucose 5% infusion solution is recommended as a diluent, and stability-improving nominal 2 mg/mL to 3 mg/mL thiotepa concentrations should be obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.