During wakefulness, increases in the partial pressure of arterial CO(2) result in marked rises in cortical blood flow. However, during stage III-IV, non-rapid eye movement (NREM) sleep, and despite a relative state of hypercapnia, cortical blood flow is reduced compared with wakefulness. In the present study, we tested the hypothesis that, in normal subjects, hypercapnic cerebral vascular reactivity is decreased during stage III-IV NREM sleep compared with wakefulness. A 2-MHz pulsed Doppler ultrasound system was used to measure the left middle cerebral artery velocity (MCAV; cm/s) in 12 healthy individuals while awake and during stage III-IV NREM sleep. The end-tidal Pco(2) (Pet(CO(2))) was elevated during the awake and sleep states by regulating the inspired CO(2) load. The cerebral vascular reactivity to CO(2) was calculated from the relationship between Pet(CO(2)) and MCAV by using linear regression. From wakefulness to sleep, the Pet(CO(2)) increased by 3.4 Torr (P < 0.001) and the MCAV fell by 11.7% (P < 0.001). A marked decrease in cerebral vascular reactivity was noted in all subjects, with an average fall of 70.1% (P = 0.001). This decrease in hypercapnic cerebral vascular reactivity may, at least in part, explain the stage III-IV NREM sleep-related reduction in cortical blood flow.
The diaphragm is the main inspiratory muscle during REM sleep. It was hypothesized that patients with isolated bilateral diaphragm paralysis (BDP) might not be able to sustain REM sleep. Polysomnography with EMG recordings was undertaken from accessory respiratory muscles in patients with BDP and normal subjects. Patients with BDP had a normal quantity of REM sleep (mean +/- SD, 18.6 +/- 7.5% of total sleep time) achieved by inspiratory recruitment of extradiaphragmatic muscles in both tonic and phasic REM, suggesting brainstem reorganization.
In COPD patients non-steady-state HCVR using PetCO(2) is well tolerated, which is as accurate as PaCO(2). HCVR slope may be derived using PetCO(2) during steady-state testing, though there may be errors in intercept compared to use of PaCO(2). In healthy volunteers PetCO(2) may be used to estimate PaCO(2) during steady-state but not rebreathing HCVR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.