Transport of antigens through the follicle-associated epithelium (FAE) of Peyer's patch (PP) is the critical first step in the induction of mucosal immune responses. We have previously described that short-term exposure to Streptococcus pneumoniae R36a induced dramatic morphological alterations of the FAE in rabbit PP. These results prompted us to investigate whether the pneumococci-induced modifications were accompanied by enhanced ability of the FAE to transport antigens. We addressed this problem by evaluating the ability of the FAE to bind, internalize, and transport fluorescent polystyrene microparticles, highly specific to rabbit M cells, after exposure to S. pneumoniae. Quantitative study revealed a marked increase in the number of microspheres in PP tissues exposed to S. pneumoniae compared to tissues exposed to either phosphate-buffered saline or Escherichia coli DH5alpha as controls. No sign of bacterially induced damage to the epithelial barrier was observed. Further confocal microscopy analysis of the FAE surface showed that a significant increase in the number of cells that showed both morphological and functional features of M cells took place within pneumococci-treated PP tissues. These data provide the first direct evidence that the FAE-specific antigen sampling function may be manipulated to improve antigen and drug delivery to the intestinal immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.